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Abstract: In this paper, the a priori estimate method, the so-called energy inequalities method based
on some functional analysis tools is developed for a Caputo time fractional 2mth order diffusion
wave equation with purely nonlocal conditions of integral type. Existence and uniqueness of the
solution are proved. The proofs of the results are based on some a priori estimates and on some
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1. Introduction

Classical initial boundary value problems for partial differential equations with integer and
noninteger order have been widely studied during the last three decades by using different methods.
One of the most important methods used and applied to linear and nonlinear partial differential
equations with integer order supplemented with classical conditions is the functional analysis method.
However, for equations with Caputo time fractional order and nonlocal conditions, there are only
a few results obtained by using the mentioned method. The Caputo fractional derivative is a nonlocal
operator since it is an integral which is a nonlocal operator. Caputo time fractional derivative can be
used to model systems with memory, since it requires all the past history. Time fractional order partial
differential equations play a great role in reducing the errors coming from the neglected parameters
while modeling real life phenomena.

One of the most important classes of the above equations are the fractional diffusion-wave
equations that have been studied and used in different branches of Science. Problem (1) constitutes
a large class of time fractional diffusion wave equations of even order such as second and fourth
order time fractional wave equations that have numerous applications in physics and engineering
as mentioned below. In our problem, local conditions at 0 and 1 are replaced by other conditions on
the moments of order 1, 2, ..., 2m− 1 which are non-local integral conditions. Although mathematical
models in two and three-dimensions are of big significance for applications, most of the recent research
articles are devoted to the fractional order diffusion wave equations in one-dimensional settings.
These equations model, for example, propagation of mechanical waves in viscoelastic media [1–4],
a non-Markovian diffusion process with memory [5], and a model governing the propagation of
mechanical diffusive waves in viscoelastic media that exhibit a power-law creep [2–4].

For various applications of fractional calculus, the reader could refer to [4,6–13].
In the literature, many researchers used the functional analysis method to investigate the well

posedness of initial boundary value problems for partial differential equations with time and space
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integer order having nonlocal conditions—we cite, for example, the references [14–17]. For the
fractional diffusion wave equations case with higher order derivatives and classical boundary
conditions, there are only few papers dealing with the existence and uniqueness of solution such
as [18–20]. In this paper, an initial boundary value problem with purely nonlocal constraints of integral
type for a Caputo time fractional 2mth order diffusion wave equation is studied by applying the
functional analysis method, the so-called energy inequality method based mainly on some a priori
estimates and on the density of the range of the operator generated by the studied problem. This work
can be considered as a contribution to the development of the functional analysis method used to
prove the well posedness of problems with fractional order. The obtained results show the efficiency of
this method to study the existence and uniqueness of solution for the time fractional order differential
equations with nonlocal conditions.

This paper is organized as follows: in Section 2, we set our fractional initial boundary value
problem. In Section 3, we give some preliminaries concerning the used function spaces, some useful
tools and write down the given problem in its operator form. In Section 4, we establish an a priori
estimate for the solution and deduce some consequences about the uniqueness of the solution and
its dependence on the free term and the given data. Section 5 provides proofs of the main result
concerning the solvability of the posed problem. We end our problem with conclusions.

2. Problem Setting

In the domain Q = (0, 1) × (0, T) where 0 ≤ T < ∞, we consider the time fractional initial
boundary problem of higher order with purely integral conditions

Lv = ∂α+1
t v + (−1)mθ(t) ∂2mv

∂x2m = f (x, t) , x ∈ (0, 1) t ∈ (0, T),

l1v = v(x, 0) = g(x), l2v = vt(x, 0) = h(x), x ∈ (0, 1),
1∫

0
xiv(x, t)dx = 0 , i = 0, 2m− 1, t ∈ (0, T),

(1)

where θ(t), f (x, t), g(x) and h(x) are given functions that satisfy certain conditions which will be
specified later on, and the operator ∂α+1

t denotes the Caputo left fractional derivative of order 1 + α

with 0 < α < 1 defined by (see [21])

∂α+1
t v(x, t) =

1
Γ(1− α)

t∫
0

vττ(x, τ)

(t− τ)α
dτ, t > 0, (2)

where Γ(1− α) is the Gamma function.
The Riemann–Liouville integral of order 0 < α < 1 is defined by (see [21])

D−α
t v(t) =

1
Γ(α)

t∫
0

v(τ)
(t− τ)1−α

dτ. (3)

Different properties of the Caputo fractional derivative and Riemann fractional-Liouville integral
can be found in [21–23] and the references therein.

3. Preliminaries

In this section, we introduce some important lemmas and inequalities needed throughout the
sequel, and write the posed problem in its operator form.
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Lemma 1 (Poincare type inequality). For m ∈ N, we have

‖I2m
x v‖2

L2(0,A) ≤ (
A
2
)2m‖v‖2

L2(0,A), (4)

where

I2m
x v =

x∫
0

ξ1∫
0

...

ξ2m−1∫
0

v(η, t)dηdξ2m−1...dξ1 =

x∫
0

(x− ξ)2m−1

(2m− 1)!
v(ξ, t)dξ.

Lemma 2 ([24]). For any absolutely continuous function J(s) on the interval [0, T], the following
inequality hold

J(s) ∂α
s J(s) ≥ 1

2
∂α

s J2(s), 0 < α < 1. (5)

Lemma 3 ([25]). Let ϕ(t) be nonnegative and absolutely continuous on [0, T], and, for almost all t ∈ [0, T],
satisfies the inequality

dϕ

dt
≤ C(t)ϕ(t) + B(t), (6)

where the functions C(t) and B(t) are summable and nonnegative on [0, T]. Then,

ϕ(t) ≤ e

t∫
0

C(τ)dτ

ϕ(0) +
t∫

0

B(ξ).e

ξ∫
0

C(τ)dτ

dξ


≤ e

t∫
0

C(τ)dτ

ϕ(0) +
t∫

0

B(τ)dτ

 . (7)

Lemma 3 can be generalized as

Lemma 4 ([24]). Let a nonnegative absolutely continuous function Z(t) satisfy the inequality

∂α
tZ(t) ≤ c1Z(t) + c2(t), 0 < α < 1, (8)

for almost all t ∈ [0, T], where c1 is a positive constant and c2(t) is an integrable nonnegative function on
[0, T]. Then,

Z(t) ≤ Z(0)Eα(c1tα) + Γ(α)Eα,α(c1tα)D−α
t c2(t), (9)

where

Eα(x) =
∞

∑
n=0

xn

Γ(αn + 1)
and Eα,α∗(x) =

∞

∑
n=0

xn

Γ(αn + α∗)
, (10)

are Mittag–Leffler functions.

Lemma 5 ([14]). Let Zi(τ) (i = 1, 2, 3) be nonnegative functions on the interval [0, T], Z1(τ), Z2(τ) are
integrable functions, and Z3(τ) is nondecreasing. Then,

t∫
0

Z1(τ)d(τ) + Z2(t) ≤ Z3(t) + C
t∫

0

Z2(τ)d(τ)

implies
t∫

0

Z1(τ)d(τ) + Z2(t) ≤ eCtZ3(t).
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Young’s inequality with ε: For any ε > 0 , we have the inequality

λβ ≤ 1
p
|ελ|p + p− 1

p

∣∣∣∣ βε
∣∣∣∣

p
p−1

, λ, β ∈ R, p > 1, (11)

where λ and β are nonnegative numbers.
A special case of (11) is the Cauchy inequality with ε:

λβ ≤ ε

2
λ2 +

1
2ε

β2, ε > 0, (12)

The solution of the problem (1) can be regarded as the solution of operator equation

Mv =W = ( f , g, h), (13)

whereM = (L, l1, l2), andM : B −→ Y is an unbounded operator with domain of definition

D(M) =


v ∈ L2(Q), ∂α+1

t v, ∂2mv
∂x2m ∈ L2(Q),

1∫
0

xivdx = 0, i = 0, 2m− 1, t ∈ (0, T),
(14)

such that v satisfies the initial conditions and where B is a Banach space of functions v endowed with
the finite norm

‖v‖2
B = sup

0≤t≤T

Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx

 (15)

and Y is Hilbert space constituting of the elementsW = ( f , g, h) equipped with the norm

‖W‖2
Y = ‖g‖2

L2(0,1) + ‖h‖
2
L2(0,1) + ‖ f ‖2

L2(Q). (16)

Here, L denotes the time fractional differential operator

L=C∂α+1
t + (−1)mθ(t)

∂2m

∂x2m .

4. A Priori Estimate for the Solution and Uniqueness

To prove the uniqueness of solution of problem (1), we establish an energy inequality for the
solution from which we deduce the uniqueness of solution of the posed problem.

Theorem 1. Assume that the function θ(t) satisfies the conditions

i) c2 ≤ θ(t) ≤ c1, ii) c4 ≤ θ′(t) ≤ c3, ∀t ∈ [0, T], (17)

where c1, c2, c3, and c4 are positive constants. Then, for any v ∈ D(M), there exists a positive constant K such
that the following a priori estimate is satisfied:

sup
0≤t≤T

Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx


≤ K

(
‖g‖2

L2(0,1) + ‖h‖
2
L2(0,1) + ‖ f ‖2

L2(Q)

)
, (18)

where K = K(η, δ, ρ) is given by

K = ρ

(
1 +

Tα

Γ(1 + α)

)
, (19)
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with η, δ and ρ are respectively given by (30), (34) and (37).

Proof. For v ∈ D(L), we consider the scalar product in L2(0, 1) of the differential equation in
problem (1) and the integrodifferential operator Nv = 2(−1)mI2m

x vt, we have

2(−1)m(∂α+1
t v, I2m

x vt)L2(0,1) + 2(θ(t)
∂2mv
∂x2m , I2m

x vt)L2(0,1)

= (Lv, Nv)L2(0,1). (20)

We separately consider the inner products on the left-hand side of Equation (20) and we integrate
by parts and taking into account boundary and initial conditions in Problem (1), we obtain

2(−1)m(∂α+1
t v, I2m

x vt)L2(0,1) = 2(−1)m(∂α
t vt, I2m

x vt)L2(0,1)

= 2(∂α
t (Im

x vt), Im
x vt)L2(0,1), (21)

2
(

θ(t)
∂2mv
∂x2m , I2m

x vt

)
L2(0,1)

= 2
1∫

0

θ(t)
∂2mv
∂x2m I

2m
x vtdx

= 2(−1)m(θ(t)
∂mv
∂xm , Im

x vt)L2(0,1)

= 2(θ(t)v, vt)L2(0,1). (22)

Substitution of (21) and (22) into (20) yields

2(∂α
t (Im

x vt), Im
x vt)L2(0,1) + 2(θ(t)v, vt)L2(0,1

= (Lv, Nv)L2(0,1) = 2(−1)m( f , I2m
x vt)L2(0,1). (23)

By Lemmas 1 and 2 and inequality (12), identity (23) reduces to

∂α
t ‖Im

x vt‖2
L2(0,1) + (θ(t)v, vt)L2(0,1 ≤ ‖ f ‖2

L2(0,1) +
1

2m ‖I
m
x vt‖2

L2(0,1). (24)

Replacing t by τ , integrating with respect to τ from zero to t and using given conditions, we obtain

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ +

t∫
0

1∫
0

θ(τ)vvτdxdτ

≤
t∫

0

‖ f (x, τ)‖2
L2(0,1)dτ +

1
2m

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ. (25)

The second term on the left-hand side can be evaluated as

2
t∫

0

1∫
0

θ(τ)vvτdxdτ =

1∫
0

θ(t)v2dx− θ(0)
1∫

0

g2(x)dx

−
t∫

0

1∫
0

θ′2v2dxdτ. (26)
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Hence, inequality (25) becomes

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ +

1
2

1∫
0

θ(t)v2dx

≤ θ(0)
1∫

0

g2(x)dx +

t∫
0

1∫
0

θ′2v2dxdτ +

t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ (27)

+
1

2m

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ.

Now, since

t∫
0

∂α
τ‖Im

x vτ‖2
L2(0,1)dτ = Dα−1‖Im

x vt‖2
L2(0,1)

− t1−α

(1− α)Γ(1− α)
‖Im

x h‖2
L2(0,1), (28)

evoking conditions (17) and using (28), we infer from (26) that

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖
2
L2(0,1)

≤ η

‖h‖2
L2(0,1) + ‖g‖

2
L2(0,1) +

t∫
0

‖ f ‖2
L2(0,1)dτ (29)

+

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ +

t∫
0

1∫
0

v2(x, τ)dxdτ

 ,

where

η =
max

(
1, c1, c2

3, 2−m, T1−α2−m

(1−α)Γ(1−α)

)
min (1, c2)

. (30)

If, in Lemma 3, we set

ϕ(t) =
t∫

0

1∫
0

v2(x, τ)dxdτ, ϕ′(t) = ‖v‖2
L2(0,1), and ϕ(0) = 0, (31)

then it yields

t∫
0

1∫
0

v2(x, τ)dxdτ ≤ TeηTη

 t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ +

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

+‖g(x)‖2
L2(0,1) + ‖h(x)‖2

L2(0,1)

)
. (32)
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Consequently, (30) transforms to

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖
2
L2(0,1)

≤ δ

 t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ +

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

+‖g(x)‖2
L2(0,1) + ‖h(x)‖2

L2(0,1)

)
, (33)

where
δ = max

{
η, η2Teη

}
. (34)

Now, by dropping the second term on the left-hand side of (33) then setting Z(t) =
t∫

0
‖Im

x vτ‖2
L2(0,1)dτ, ∂α

tZ(t) = Dα−1‖Im
x vt‖2

L2(0,1) in Lemma 4, we obtain

t∫
0

‖Im
x vτ‖2

L2(0,1)dτ

≤ δΓ(α)Eα,α (δtα)

(
D−α−1

t ‖ f ‖2
L2(0,1) +

T
αΓ(α)

‖h‖2
L2(0,1) +

T
αΓ(α)

‖g‖2
L2(0,1)

)
(35)

≤ δΓ(α)Eα,α (δtα)max
{

1,
T

αΓ(α)

}
×
(

D−α−1
t ‖ f ‖2

L2(0,1) + ‖h‖
2
L2(0,1) + ‖g‖

2
L2(0,1)

)
.

Combination of (33) and (36) leads to

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖
2
L2(0,1)

≤ ρ

 t∫
0

‖ f (x, τ)‖2
L2(0,1)dτ + D−α−1

t ‖ f ‖2
L2(0,1) (36)

+‖h‖2
L2(0,1) + ‖g‖

2
L2(0,1)

)
,

where

ρ = δ max
(

1, δΓ(α)Eα,α (δtα)max
{

1,
T

αΓ(α)

})
. (37)

It is obvious that

D−α−1
t ‖ f ‖2

L2(0,1) ≤
tα

Γ(1 + α)

∫ t

0
‖ f ‖2

L2(0,1) dt,

≤ Tα

Γ(1 + α)

∫ T

0
‖ f ‖2

L2(0,1) dt. (38)

Then, it follows from (37) and (38) that

Dα−1‖Im
x vt‖2

L2(0,1) + ‖v‖
2
L2(0,1)

≤ K
(
‖ f ‖2

L2(Q) + ‖h‖
2
L2(0,1) + ‖g‖

2
L2(0,1)

)
, (39)

where

K = ρ

(
1 +

Tα

Γ(1 + α)

)
.
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Observe that the right-hand side of (39) is independent of the variable t, so we are allowed to take
the least upper bound of the left-hand side with respect to t over [0, T], and the a priori estimate (18)
then follows and from which we deduce the uniqueness and continuous dependence of the solution
on the input data of problem (1).

5. Existence of Solution

In this section, we prove the main result concerning the existence of solution of problem (1)
The a priori estimate (18) shows that the unbounded operatorM has an inverseM−1 : R(M)→B.
Since R(M) is a subset of Y , we therefore can construct its closureM in a manner that the estimate (18)
holds for this extension and R(M) coincides with the whole space B. Hence, the following:

Corollary 1. The operatorM : B→ Y admits a closure (the proof is similar to that in [14]).
Estimate (18) can be then extended to

sup
0≤t≤T

Dα−1
t ‖Im

x vt(x, t)‖2
L2(0,1) +

1∫
0

v2(x, t)dx


≤ K

(
‖g‖2

L2(0,1) + ‖h‖
2
L2(0,1) + ‖ f ‖2

L2(Q)

)
(40)

for all v ∈ D(M).

It follows from (40) that the strong solution of problem (1) is unique, that is,Mv = Y . We also
deduce from estimate (40) the following:

Corollary 2. R(M) is a closed subset in Y and R(M) =R(M) andM−1
=M−1.

We are now ready to give the result of existence of the solution of problem (1).

Theorem 2. Suppose that conditions of Theorem 4.1 are satisfied. Then, for allW = ( f , g, h) ∈ Y , there exists
a unique strong solution v =M−1W =M−1W of problem (1).

Proof. Estimate (40) asserts that, if a strong solution of (1) exists, it is unique and depends continuously
on the data. Corollary 2 says that, in order to prove that problem (1) admits a strong solution for any
W = ( f , g, h) ∈ Y , it suffices to show that the closure of the range of the operatorM is dense in Y .
To establish the existence of the strong solution of problem (1), we use a density argument. That is,
we show that the range R(M) of the operatorM is dense in the space Y for every element v in the
Banach space B. For this, we consider the following special case of density.

Theorem 3. Suppose that conditions of Theorem 1 are satisfied. If for all functions v ∈ D(M) such that
l1v = v(x, 0) = 0, l2v = vt(x, 0) = 0 and for some function ψ ∈ L2(Q), we have

T∫
0

(Lv, ψ)L2(0,1) dt = 0, (41)

then ψ vanishes a.e in Q.

Proof. Identity (40) is equivalent to

T∫
0

(
∂α+1

t v + (−1)mθ(t)
∂2mv
∂x2m , ψ

)
L2(0,1)

dt = 0. (42)
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Assume that a function σ(x, t) verifies conditions boundary and initial conditions in (1) and such
that σ, σx, Itσ, ItI2m

x σ, I2
t σ and ∂

β+1
t σ ∈ L2(Q), we then set

v(x, t) = I2
t σ =

t∫
0

s∫
0

σ(x, z)dzds. (43)

Equation (42) then becomes

T∫
0

(
∂α+1

t I2
t σ + (−1)mθ(t).

∂2m

∂x2m (I2
t σ), ψ

)
L2(0,1)

dt = 0. (44)

We now introduce the function

ψ(x, t) = Itσ + (−1)mI2m
x Itσ. (45)

Equation (44) then reduces to

T∫
0

(
∂α+1

t I2
t σ, Itσ

)
L2(0,1)

dt +
T∫

0

(
∂α+1

t I2
t σ, (−1)mI2m

x Itσ
)

L2(0,1)
dt

+

T∫
0

(
(−1)mθ(t).

∂2m

∂x2m (I2
t σ), Itσ

)
L2(0,1)

dt (46)

+

T∫
0

(
θ(t).

∂2m

∂x2m (I2
t σ), I2m

x Itσ

)
L2(0,1)

dt

= 0.

Recall that the function σ satisfies boundary conditions in (1) and then, computing the inner
products in (45), one has (

∂α+1
t I2

t σ, Itσ
)

L2(0,1)
= (∂α

t Itσ, Itσ)L2(0,1) ,

≥ 1
2

∂α
t ‖Itσ‖2

L2(0,1), (47)(
∂α+1

t I2
t σ, (−1)mI2m

x Itσ
)

L2(0,1)
= (∂α

t Im
x Itσ, Im

x Itσ)L2(0,1) ,

≥ 1
2

∂α
t ‖Im

x Itσ‖2
L2(0,1), (48)(

(−1)mθ(t).
∂2m

∂x2m (I2
t σ), Itσ

)
L2(0,1)

=

(
θ(t)

∂m

∂xm (I2
t σ),

∂m

∂xm (ItP)
)

L2(0,1)
(49)

=
1
2

d
dt

1∫
0

θ(t)
(

∂m

∂xm (I2
t σ)

)2
dx− 1

2

1∫
0

θ′(t)
(

∂m

∂xm (I2
t σ)

)2
dx,
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(
θ(t).

∂2m

∂x2m (I2
t σ), I2m

x Itσ

)
L2(0,1)

=
(

θ(t)(I2
t σ), Itσ

)
L2(0,1)

=
1
2

d
dt

1∫
0

θ(t)(I2
t σ)2dx (50)

−1
2

1∫
0

θ′(t)(I2
t σ)2dx.

Evoking (47)–(51), replace t by τ, integrating with respect to τ from zero to t and using
conditions (17), we obtain

Dα−1
t ‖Itσ‖2

L2(0,1) + Dα−1
t ‖Im

x Itσ‖2
L2(0,1) +

1∫
0

(
∂m

∂xm (I2
t σ)

)2
dx

+

1∫
0

(I2
t σ)2dx (51)

≤ c3

min(1, c1)

 t∫
0

1∫
0

(
∂m

∂xm (I2
τ σ)

)2
dxdτ +

t∫
0

1∫
0

(I2
τ σ)2dxdτ

 .

By dropping the first two terms on the left-hand side of (50) and applying Gronwall’s Lemma 5,
by setting Z1(t) = 0, Z3(t) = 0 and

Z2(t) =
1∫

0

(
∂m

∂xm (I2
t σ)

)2
dx +

1∫
0

(I2
t σ)2dx,

we have
1∫

0

(
∂m

∂xm (I2
t σ)

)2
dx +

1∫
0

(I2
t σ)2dx ≤ 0 (52)

for all t ∈ [0, T]. Hence, ψ = 0 a.e in Q.

To complete the proof of Theorem 2, and prove the density (R(M) = Y) in a general case,
suppose that, for some element (F1, θ1, θ2) ∈ R(M)⊥, we have

T∫
0

(Lv, F1)L2(0,1) ds + (l1v, θ1)L2(0,1) + (l2v, θ2)L2(0,1) = 0, (53)

and then we prove that F1 = 0, θ1 = 0, θ2 = 0. If we put v ∈ D(M) satisfying conditions
l1v = v(x, 0) = 0 and l2v = vt(x, 0) = 0 into (53), we obtain

T∫
0

(Lv, F1)L2(0,1) ds = 0, ∀v ∈ D(M). (54)

By Theorem 3, Equation (54) implies that F1 = 0 a.e in Q. Then, (53) becomes

(l1v, θ1)L2(0,1) + (l2v, θ2)L2(0,1) = 0 ∀θ ∈ D(M). (55)

Since the range of the trace operator l1 and l2 is dense in L2(0, 1), it follows then from (55) that
θ1 = 0, θ2 = 0. This ends the proof of Theorem 2.
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6. Conclusions

The existence and uniqueness of a generalized solution for a higher order fractional diffusion
wave equation in Caputo sense subject to initial and weighted integral boundary conditions are
established. It is found that the method of energy inequalities is successfully applied to obtaining
a priori bounds for the solution of fractional initial boundary value problems of higher order with
nonlocal constraints as in the classical case. The obtained results will contribute to the development
of the functional analysis method and enrich the existing non-extensive literature on the non local
fractional mixed problems in the Caputo sense.
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