Endocrine 4

Adrenal gland And Pancreas

Adrenal gland

- Structure
- Cortex
 - Glucocorticoids
 - Effects
 - Control of secretion
 - Mineralocorticoids
 - Effects
 - Control of secretion
 - Sex steroids
- Medulla
 - Catecholamines

Adrenal gland Structure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Adrenal cortex
 - 80% of an adrenal gland's total weight
 - Zona glomerulosa
 - Mineralocorticoids
 - Zona fasciculata
 - Glucocorticoids
 - Small amount of androgens+estrogens
 - Zona reticularis
 - Androgens (DHEA)
 - Small amount of estrogens and glucocorticoids

Cortex

Activity stimulated by ACTH

Cortical hormones

- Mineralcorticoids
 - Aldosterone > regulate salt and water balance
- Glucocorticoids
 - Cortisol

 regulate glucose metabolism and the immune system.
- Gonadocorticoids
 - Androgens
 - Estrogens

- Glucocorticoid hormones
 - Most potent naturally occurring glucocorticoid is cortisol
 - Direct effects on carbohydrate metabolism
 - Anti-inflammatory and growthsuppressing effects

Effects of cortisol

On carbohydrates

- Stimulates gluconeogenesis in the liver
- Increases glycogen storage in liver cells
- Decreases glucose utilization by the cells

On protein

- Proteokatabolic effect in all body cells except the liver
- Mobilization of amino acids from muscles
- Decreases protein synthesis

On fat

Mobilization of fatty acids from adipose tissue

Effects of cortisol

Anti-inflammatory

- Stabilizes lysosomal membrane
- Reduces degree of vasodilatation
- Decreases permeability of capillaries
- Decreases migration of white blood cells
- Suppresses immune system
- Resolution of inflammation

Mineralocorticoid hormones

- Most potent naturally occurring mineralocorticoid is aldosterone
- Affect ion transport by epithelial cells
 - Increase the activity of the sodium pump of the epithelial cells
 - Cause sodium retention and potassium and hydrogen loss
 - Regulated by the renin-angiotensin system

juxtaglomerular apparatus (JGA)

JGA

A specialized collection of cells located at the junction of the afferent and efferent arterioles with a portion of the distal convoluted tubule of the nephron in the kidney two types of cells:

- macula densa cells
- •juxtaglomerular cells

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

JGA

Macula densa cells –

- Specialized chemoreceptor cells in the wall of the distal convoluted tubule
- respond to changes in solute concentration (especially ↓sodium levels) in the urine
- sensory information is conveyed to the juxtaglomerular cells which will adjust their output of renin accordingly.

juxtaglomerular cells

- Specialized smooth muscle cells which act as mechanoreceptors which stretch in response to increase in the blood pressure of the afferent arteriole
- synthesize and secrete the enzyme renin

Control of Aldosterone secretion

Renin-angiotensin-aldosterone system

Role of Angiotensin

- Angiotensin constricts the efferent renal arterioles, which elevates blood pressure in the glomerular capillaries.
- Angiotensin constricts peripheral blood vessels all over the body—an action that elevates central blood pressure.
- Angiotensin stimulates aldosterone release from the adrenal cortex
- Angiotensin acts on the brain to stimulate thirst. Increased water intake in response to thirst increases blood volume and blood pressure

Abnormal adrenocortical secretion

- Hyperadrenalism (Cushing's sydndrome)
 - causes
 - pituitary adenoma 75-90%
 - pharmocologic
 - adrenal adenoma, carcinoma
 - ectopic ACTH

Abnormal adrenocortical secretion

- Hypoadrenalism (addison's disease)
 - causes
 - Primary (adrenal) atrophy
 - 80% autoimmune
 - Tuberculosis or malignant invasion
 - Secondary (pituitary)
 - Very low ACTH

Adrenal medulla

- Adrenal medulla
 - •Innervated by the sympathetic nervous system
 - Releases epinephrine and norepinephrine

Endocrine function of pancreas

Islets of Langerhans
Clusters of cells scattered
between the acini
4 types of cells

Pancreas

(From Thibodeau GA, Patton K: Anatomy & physiology, ed 5, St Louis, 2003, Mosby.)

Major cell types of the Islets of Langerhans and the Hormones they produce

Name	Hormone produced	Percentage of total Islet*
Alpha cell	Glucagon	25
Beta cell	Insulin	60
Delta cell	Somatostatin	10
F cell	Pancreatic polypeptide	1

^{*}The remaining 4% consists of connective tissue and blood vessels.

Pancreas

- Insulin
 - Synthesized from proinsulin (Polypeptide: 51 a.a.)
 - Secretion is promoted by increased blood glucose levels
 - Facilitates the rate of glucose uptake into the cells of the body
 - Anabolic hormone
 - Synthesis of proteins, lipids, and nucleic acids

Endocrine Pancreas

- Glucagon
 - Secretion is promoted by decreased blood glucose levels
 - Stimulates glycogenolysis, gluconeogenesis, and lipolysis
- Somatostatin
 - Possible involvement in regulating alpha and beta cell secretions

Glucagon

Glucagon catabolizes food stores

Glucose homeostasis

Diabetes Mellitus

Metabolic disturbances (hyperglycemia and glycosuria)

Types of Diabetes

Type 1 Diabetes
Affects children

Cause: inadequate insulin secretion

Treatment: insulin injection

Type 2 diabetes
Affects adults

Cause defect in insulin action

Treatment:diet or OHA

Thank you