DRAFT KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

Mid-term Exam / Math-244 (Linear Algebra) / Semester 441 <u>Max. Marks: 30</u> <u>Max. Time: 2 hrs</u>

Question 1: [Marks: 3+4+3]:

a) Let $X = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -2 \\ 1 & 1 & -3 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix}$. Show that *RREF* of the matrix X is same as the *RREF* of Y. b) Let the real matrix $\begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ be non-invertible. Show that a = b or b = c or b = c. c) Let A be a matrix with |A| = 1 and $adj(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find A.

Question 2: [Marks: 3+4+3]:

a) Explain! Why the following system of linear equations has no non-trivial solution?

$$x - y + z = 0$$

$$x + y + z = 0$$

$$4x + 2y + z = 0.$$

b) Find the values of λ for which the following system of equations has a unique solution:

$$2x_1 + 3x_2 + x_3 = -1$$

$$x_1 + 2x_2 + x_3 = 0$$

$$3x_1 + x_2 + (\lambda^2 - 6) x_3 = \lambda - 3$$

c) Solve the following system of linear equations by using the Cramer's rule:

$$4x + 2y + z = 3x + y + z = 2x - y + z = 1.$$

Question 3: [Marks: 3+3+4]

- a) Show that $F := \{A \in M_n(\mathbb{R}) : A^T = A\}$ is a subspace of the vector space $M_n(\mathbb{R})$.
- b) Show that the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ are linearly independent in $M_2(\mathbb{R})$
- c) Let W be subspace generated by $\{(1, 0, 1, 1), (1, -1, 2, 0), (5, 1, 4, 0)\}$ in the Euclidean space \mathbb{R}^4 . Find a basis and dimension of W.

\bowtie