DRAFT

KING SAUD UNIVERSITY

COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS
Mid-term Exam / Math-244 (Linear Algebra) / Semester 441
Max. Marks: 30
Max.Time: 2 hrs

Question 1: [Marks: 3+4+3]:
a) Let $\boldsymbol{X}=\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} & -\mathbf{2} \\ \mathbf{1} & \mathbf{1} & -\mathbf{3}\end{array}\right]$ and $Y=\left[\begin{array}{lll}\mathbf{2} & -\mathbf{1} & \mathbf{0} \\ \mathbf{1} & -\mathbf{2} & \mathbf{1} \\ \mathbf{1} & \mathbf{- 1} & \mathbf{0}\end{array}\right]$. Show that $R R E F$ of the matrix \boldsymbol{X} is same as the RREF of \boldsymbol{Y}.
b) Let the real matrix $\left[\begin{array}{lll}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \\ \boldsymbol{a}^{2} & \boldsymbol{b}^{2} & c^{2}\end{array}\right]$ be non-invertible. Show that $a=b$ or $b=c$ or $b=c$.
c) Let \boldsymbol{A} be a matrix with $|\boldsymbol{A}|=1$ and $\operatorname{adj}(\boldsymbol{A})=\left[\begin{array}{rrr}\mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]$. Find \boldsymbol{A}.

Question 2: [Marks: 3+4+3]:
a) Explain! Why the following system of linear equations has no non-trivial solution?

$$
\begin{aligned}
x-y+z & =0 \\
x+y+z & =0 \\
4 x+2 y+z & =0 .
\end{aligned}
$$

b) Find the values of λ for which the following system of equations has a unique solution:

$$
\begin{aligned}
2 x_{1}+3 x_{2}+ & x_{3} & =-1 \\
x_{1}+2 x_{2}+ & x_{3} & =0 \\
3 x_{1}+x_{2}+\left(\lambda^{2}-6\right) & x_{3} & =\lambda-3 .
\end{aligned}
$$

c) Solve the following system of linear equations by using the Cramer's rule:

$$
\begin{aligned}
4 x+2 y+z & =3 \\
x+y+z & =2 \\
x-y+z & =1 .
\end{aligned}
$$

Question 3: [Marks: 3+3+4]

a) Show that $\boldsymbol{F}:=\left\{\boldsymbol{A} \in \boldsymbol{M}_{n}(\mathbb{R}): \boldsymbol{A}^{T}=\boldsymbol{A}\right\}$ is a subspace of the vector space $\boldsymbol{M}_{n}(\mathbb{R})$.
b) Show that the matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{rr}0 & 1 \\ 0 & -1\end{array}\right]$ are linearly independent in $\boldsymbol{M}_{2}(\mathbb{R})$
c) Let \boldsymbol{W} be subspace generated by $\{(1,0,1,1),(1,-1,2,0),(5,1,4,0)\}$ in the Euclidean space \mathbb{R}^{4}. Find a basis and dimension of \boldsymbol{W}.

