
FAAS Deter. Of Total Water Hardness in some Riyadh's water samples &

Calculation of (gpg),(dGH),(°Clark) and (°fH)

Introduction:

The simple definition of water hardness is the amount of dissolved calcium and magnesium in the water. Hard water is high in dissolved minerals, largely calcium and magnesium. Depending on the hardness of your water, after using soap to wash you may have felt like there was a film of residue left on your hands. In hard water, soap reacts with the calcium (which is relatively high in hard water) to form "soap scum". When using hard water, more soap or detergent is needed to get things clean, be it your hands, hair, or your laundry.

Have you done a load of dishes in the dishwasher, taken out the glasses, and noticed spots or film on them? This is more hard -water residue- not dangerous, but unsightly. When hard water is heated, such as in a home water heater, solid deposits of calcium carbonate can form. This scale can reduce the life of equipment, raise the costs of heating the water, lower the efficiency of electric water heaters, and clog pipes. And, yes, mineral buildup will occur in your home coffee maker too, which is why some people occasionally run vinegar (an acid) through the pot.

But hard water can have some benefits, too. Humans need minerals to stay healthy, and the World Health Organization (WHO) states that drinking-water may be a contributor of calcium and magnesium in the diet and could be important for those who are marginal for calcium and magnesium intake.

What is/arc:

Water Hardness?

Types of WH?

Causes of WH? Facult: Member (BSc. MSc. DSc. Meior

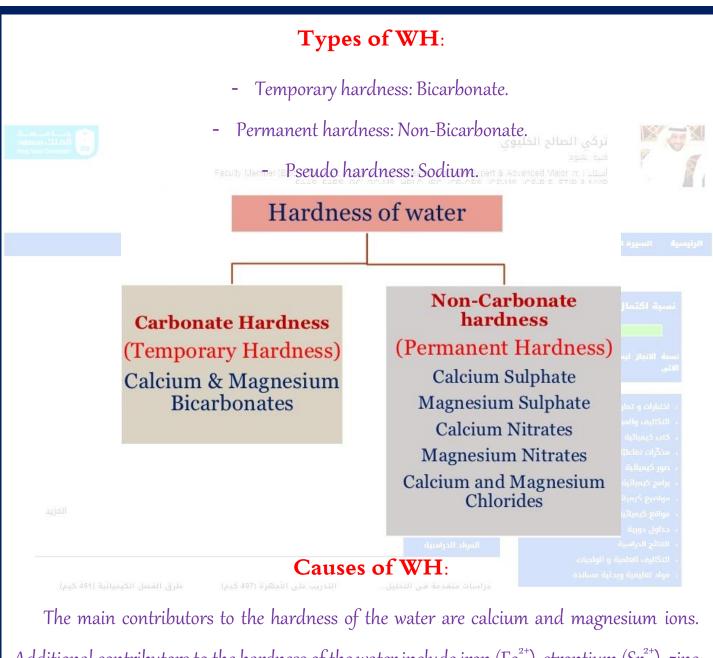
Softening of HW:

تركي الصالح الخليوي قلبة لعدود السلام asset السلام asset & Advanced Wajor it is ANNA ASSET ETTE & NAME

WH main effects?

(gpg), (dGH), (°Clark) and (°A+)?

calculations of (gpg), (dGH) and (°ft)?


نسية اكتمال الموقع 1807 تسبة الانجاز ليس لها علاقة ببدل الحاسب الالي

Water Hardness:

In scientific terms, water hardness is generally the amount of dissolved calcium and magnesium in water. But in layman's terms, you may notice water hardness when your hands still feel slimy after washing with soap and water, or when your drinking glasses at home become less than crystal clear.

لمواد الحراسية

WATER HARDNESS SCALE									
ppm as CaCO ₃	Grains/Gallon	German degrees	Clark degrees	French degrees	Classification				
<60	<3.5	<3.4	<4.2	<6.0	Soft				
61 - 120	3.51 - 6.96	3.41 - 6.72	4.21 - 8.40	6.1 - 12.0	Moderately Hard				
121 - 180	6.97 - 10.44	6.73 -10.08	8.40 - 12.60	12.1 - 18.0	Hard				
>180	>10.44	>10.08	>12.60	>18.0	Very Hard				

The main contributors to the hardness of the water are calcium and magnesium ions. Additional contributors to the hardness of the water include iron (Fe^{2+}), strontium (Sr^{2+}), zinc (Zn^{2+}), manganese (Mn^{2+}) and other ions. However, their concentrations are usually significantly lower than the concentration of calcium and magnesium.

Mainly due to Four Dissolved Compounds:

- 1. Calcium Bicarbonate
- 2. Magnesium Bicarbonate
- 3. Calcium Sulphate
- 4. Magnesium Sulphate

Less Common:

- Calcium Chlorides and Nitrates
- 2. Magnesium Chloride and Nitrates
- 3. Iron and Manganese salts
- 4. Aluminium Compounds

WH Main Effects:

Undesirable effects	Exemples (non-comprehensive list)				
LIMESCALE DEPOSITS, MARKS	White marks on the walls of shower cabinets, taps, windows Limescale deposits that trap dirt in toilet pans, washbasins and sinks Discoloured and indelible rings appearing on laundry when ironing due to mineral particles deposited by the steam Etc.				
MALFUNCTIONING EQUIPMENT DUE TO LIMESCALE DEPOSITS	Flow from taps reduced to a mere trickle due to limescale deposits Flooding and breakdown of washing machines with components covered by limescale (heating elements)				
REDUCED PERFORMANCE AND OPERATIONAL LIFE OF APPLIANCES AND EQUIPMENT	Unwanted shutdown of electrical household appliances with limescale deposits Reduced performance of appliances due to limescale				
EXCESSIVE ENERGY CONSUMPTION	Limescale deposits act as thermal insulation As a result, the energy output from heating elements with limescale deposits reduces considerably with very hard water (see the Battelle Institute study)				
INCREASED CONSUMPTION OF DETERGENTS AND THE NEED TO ADD ANTI-SCALING PRODUCTS OOR MOISTURISING CREAMS	Une eau calcaire empêche le savon, les détergents et produits de nettoyage de mousser et contraint à augmenter les dosages (voir préconisations des marques de lessive : dosages eau douce/eau dure). Need to add anti-scaling products, which are generally expensive lincreased use of moisturising creams to counteract dry skin due to the high lime content				
NCREASE IN POLLUTING WASTE	Due to over-consumption of detergents and additives in cases of hard water, users generate more chemical waste				
DISCOMFORT AND UNPLEASANT SENSATIONS	Dry skin, that can lead to skin disorders Dull, brittle hair Rough, stiff and uncomfortable laundry Altered taste of coffee or tea Water giving rise to eye disorders Etc.				

WH Removal:

- 1. Boiling
- 2. Addition of lime
- 3. Addition of sodium carbonates
- Base exchange process

Temporary Hardness

1. Addition of Sodium carbonate

2. Base exchange process

Permanent Hardness

 $(gpg),\,(dGH),\,(^{o}Clark)\,\,and\,(^{o}fH):$

- Parts per million (ppm) is usually defined as 1 mg/L CaCO₃ (the definition used below).
 It is equivalent to mg/L without chemical compound specified, and to American degree.
- Grains per Gallon (gpg) is defined as 1 grain (64.8 mg) of calcium carbonate per U.S. gallon (3.79 litres), or 17.118 ppm.
- a mmol/L is equivalent to 100.09 mg/L CaCO₃ or 40.08 mg/L Ca²⁺.
- A degree of General Hardness (dGH or 'German degree (°dH, deutsche Härte))' is defined as 10 mg/L CaO or 17.848 ppm.
- A Clark degree (°Clark) or English degrees (°e or e) is defined as one grain (64.8 mg) of CaCO₃ per Imperial gallon (4.55 litres) of water, equivalent to 14.254 ppm.
- A French degree (°fH or °f) is defined as 10 mg/L CaCO₃, equivalent to 10 ppm.

 $TWH_{(ppm)} = \left[\left(\frac{M.wt\ of\ Calcium\ Carbonate}{A.wt\ of\ Calcium} \right) \left[Ca \right] ppm + \left(\frac{M.wt\ of\ Calcium\ Carbonate}{A.wt\ of\ Magnesium} \right) \left[Mg \right] ppm \right]$

$$= \begin{bmatrix} (\frac{100}{40})[Ca]ppm_0 + (\frac{100}{124})[Mg]ppm \end{bmatrix}$$
Turksu@outoo

 $TWH_{(ppm)} = (2.5[Ca]_{ppm} + 4.1[Mg]_{ppm})$

Experimental:

1- Prepare 50ml Of [250ppm] of (Ca^{2+}) & 50ml Of [250ppm] of (Mg^{2+}) from the given

substances using distelled water.

2- Prepare next (all are **50ml** Volumetric flasks):

No	1	2	3	4	1	2	3 =	عرض 4 د	9	ال الـ 10	11 ية اكت
	دال المست هو التعليم +Ca ² +				a alah éja ga jial nga 24 ara ga jialé gapi k $ m Mg^2+$			Blank	Sample _{Ca}	$Sample_{Mg}$	
Flask	461) äulija ag luca ji	. الفصل الد ق الفصل الد قي الما الت	278 km 08* *** .	. **Im 08 مرة (497 ك. غير إلى تصـ غير إلى تصـ	**:Im 02* ربب على الله عدد عدا الا	علیه عن تعد ***Soml	النظرية والا النظرية والا الالالالالالالالالالالالالالالالالا	سر الدراس شاف الدراس سات متقدمة بات متقدمة	in State of the S	مارين مبادرات المجتمعية البه بالبية نية نية المرة فويطية مسالدة راسية	ا اختبارات و التكايف و ال
(ppm)	-20 -20	يق النبيط 40 ع ولاي والغي	# 60 = #################################	حة في ال - 80 أو والمعاود الش	2.5 2.5	5 5 L	- 2.5 d	10 10	NIL	(pad NIL Padill pad 451) addinacidl food 3521 addinacidl	' كيم) NIL عنري الفصر طرق الفصر

- 3- Add (0.5ml) of [2M] of H_2SO_4 to each flasks (Except Sample_{Mg}).
- 4- Fill all of the above flasks with <u>distilled water</u> (Except Sample $_{Mg}$).
- 5- The unknown sample are ready to be determined directly for [Ca²⁺].
- 6- For determination of [Mg²⁺], Dilute the unknown sample to one fifth (1/5), then Add

 (0.5ml) of [2M] of H₂SO₄, And Fill with <u>distilled water</u>

 (0.5ml) of [2M] of H₂SO₄, And Fill with <u>distilled water</u>
- 7- Move to the next Laboratory and follow given instructions to find the Total Water Hardness.

Results: No $C_{(ppm)}$ Absorbance Element Blank **NIL** ---() Ca^{2+} 20 لصالو 🗛 خليوي Ca²⁺ 2 40 A_2 3 Ca^{2+} <u>60</u>0 - 1200 A_3 Ca^{2+} 4 A_4 80 Ca²⁺ Sample Mg^{2+} 2.5 1 A_1 2 Mg^{2+} 5 A_2 Mg^{2+} 3 7.5 A_3 4 Mg^{2+} 10 A_4 Sample Mg^{2+} ? (1/5 OF THE SAMPLE A_{Mg} Calibration Graphs: Ideal Curve Ca Concentration (ppm) O Unknown Ctample on Absorbance Mg Concentration (ppm) O Unknown