Compressibility & Bulk modules of elasticity:

$$k = -\frac{dp}{\frac{dv}{v}}$$

 $dp = pressure\ change\ ,\ dv = volume\ change\ ,\ v = original\ volume\ ,\ K = Bulk\ modules$ of elasticity .

Example:

1.25:

volume 1000cm3 at 1 MN²/m and volume 995 Cm³ at 2 MN²/m what Bulk modules of elasticity (K)?

$$k = -\frac{dp}{\frac{dv}{v}} = -\frac{2-1}{(995-1000)/1000} = 200 Mpa$$

1.26:

Find the bulk modulus of elasticity when pressure 150 psi applied to 10 ft^3 liquid causes a volume reduction of 0.02 ft^3 ?

$$k = -\frac{dp}{\frac{dv}{v}} = -\frac{(150 - 0)/144}{0.02/10} = 108000000 \frac{ib}{ft3}$$

1.27:

For K=2.2 Gpa for the bulk modulus of elasticity for water, what pressure is required to reduces its volume bu 0.5%?

$$k = -\frac{dp}{\frac{dv}{v}}$$
 2.2 = $-\frac{p2-0}{-0.005} = p2 = 0.011$. Gpa

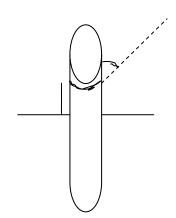
1.29:

From the following test data, determent the bulk modules of elasticity of water: at 500 psi the volume was 1 ${\rm ft}^3$, and 3500 psi the volume was 0.990 ${\rm ft}^3$?

$$k = -\frac{dp}{\frac{dv}{v}} = -\frac{500 - 3500}{\frac{1 - 0.99}{1}} = 300000 \ psi$$

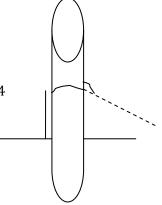
Capillarity:

$$h = \frac{4 * F \cos \theta}{\gamma * d}$$


h = high tube fluid . F= surface tension , γ =specific weight , d= diameter of pip

Example:

1 -


a – water $\theta = 0$, $r = 1 \; mm$, temprte = 20 , $surface \; tension = 0.073$

$$h = \frac{4 * F \cos \theta}{\gamma * d} = \frac{4 * 0.073}{9790 * 2E - 3} = 0.0149 m$$

b- mercury $\theta=130$, $r=1\,mm$, $\gamma=13.6 {{\it KN}\over {\it m2}}$, surface tension = 0.514

$$h = \frac{4 * F \cos \theta}{\gamma * d} = \frac{4 * 0.514 \cos 130}{13.6 * 2 E - 3} = m$$

