
Chapter 6

Circular Motion
and

Other Applications of Newton’s 
Laws
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Uniform Circular Motion
n A force, Fr , is directed 

toward the center of the 
circle

n This force is associated 
with an acceleration, ac

n Applying Newton’s 
Second Law along the 
radial direction gives
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Uniform Circular Motion, cont
n A force causing a 

centripetal acceleration acts 
toward the center of the 
circle

n It causes a change in the 
direction of the velocity 
vector

n If the force vanishes, the 
object would move in a 
straight-line path tangent 
to the circle
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Centripetal Force
n The force causing the centripetal 

acceleration is sometimes called the 
centripetal force

n This is not a new force, it is a new role
for a force

n It is a force acting in the role of a force 
that causes a circular motion
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Conical Pendulum
n The object is in 

equilibrium in the 
vertical direction and 
undergoes uniform 
circular motion in 
the horizontal 
direction

n v is independent of 
m

sin tanv Lg q q=
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Motion in a Horizontal Circle
n The speed at which the object moves 

depends on the mass of the object and 
the tension in the cord

n The centripetal force is supplied by the 
tension

Trv
m

=
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Horizontal (Flat) Curve
n The force of static 

friction supplies the 
centripetal force

n The maximum speed at 
which the car can 
negotiate the curve is

n Note, this does not 
depend on the mass of 
the car

v grµ=
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Banked Curve
n These are designed 

with friction equaling 
zero

n There is a component 
of the normal force that 
supplies the centripetal 
force
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Loop-the-Loop
n This is an example 

of a vertical circle
n At the bottom of the 

loop (b), the upward 
force experienced by 
the object is greater 
than its weight
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Loop-the-Loop, Part 2
n At the top of the 

circle (c), the force 
exerted on the 
object is less than 
its weight
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Non-Uniform Circular Motion
n The acceleration and 

force have tangential 
components

n Fr produces the 
centripetal acceleration

n Ft produces the 
tangential acceleration

n SF = SFr + SFt
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Vertical Circle with Non-
Uniform Speed
n The gravitational 

force exerts a 
tangential force on 
the object
n Look at the 

components of Fg
n The tension at any 

point can be found
2
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Top and Bottom of Circle
n The tension at the 

bottom is a 
maximum

n The tension at the 
top is a minimum

n If Ttop = 0, then

topv gR=
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Motion in Accelerated Frames
n A fictitious force results from an 

accelerated frame of reference
n A fictitious force appears to act on an 

object in the same way as a real force, but 
you cannot identify a second object for the 
fictitious force
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“Centrifugal” Force
n From the frame of the 

passenger (b), a force appears 
to push her toward the door

n From the frame of the Earth, 
the car applies a leftward 
force on the passenger

n The outward force is often 
called a centrifugal force
n It is a fictitious force due to the 

acceleration associated with the 
car’s change in direction

10/26/23 15Chapter 6



“Coriolis Force”
n This is an apparent 

force caused by 
changing the radial 
position of an object 
in a rotating 
coordinate system

n The result of the 
rotation is the 
curved path of the 
ball
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Fictitious Forces, examples
n Although fictitious forces are not real 

forces, they can have real effects
n Examples:

n Objects in the car do slide
n You feel pushed to the outside of a 

rotating platform
n The Coriolis force is responsible for the 

rotation of weather systems and ocean 
currents
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Fictitious Forces in Linear 
Systems

n The inertial observer (a) 
sees

n The noninertial observer 
(b) sees
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Fictitious Forces in a Rotating 
System

n According to the inertial observer (a), the tension is the 
centripetal force

n The noninertial observer (b) sees

2mvT
r

=

2
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Motion with Resistive Forces
n Motion can be through a medium

n Either a liquid or a gas
n The medium exerts a resistive force, R, on an 

object moving through the medium
n The magnitude of R depends on the medium
n The direction of R is opposite the direction of 

motion of the object relative to the medium
n R nearly always increases with increasing 

speed
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Motion with Resistive Forces, 
cont
n The magnitude of R can depend on the 

speed in complex ways
n We will discuss only two

n R is proportional to v
n Good approximation for slow motions or small 

objects
n R is proportional to v2

n Good approximation for large objects
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R Proportional To v
n The resistive force can be expressed as 

R = - b v
n b depends on the property of the 

medium, and on the shape and 
dimensions of the object

n The negative sign indicates R is in the 
opposite direction to v
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R Proportional To v, Example
n Analyzing the 

motion results in
dvmg bv ma m
dt

dv ba g v
dt m

- = =

= = -
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R Proportional To v, Example, 
cont
n Initially, v = 0 and 

dv/dt = g
n As t increases, R

increases and a
decreases

n The acceleration 
approaches 0 when R
® mg

n At this point, v
approaches the 
terminal speed of the 
object
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Terminal Speed
n To find the terminal speed, 

let a = 0

n Solving the differential 
equation gives

n t is the time constant and 
t = m/b

T
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n For objects moving at high speeds through 
air, the resistive force is approximately equal 
to the square of the speed

n R = ½ DrAv2

n D is a dimensionless empirical quantity that called 
the drag coefficient

n r is the density of air
n A is the cross-sectional area of the object
n v is the speed of the object

R Proportional To v2

10/26/23 26Chapter 6



R Proportional To v2, example
n Analysis of an object 

falling through air 
accounting for air 
resistance
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R Proportional To v2, Terminal 
Speed
n The terminal speed 

will occur when the 
acceleration goes to 
zero

n Solving the equation 
gives

2
T

mgv
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=
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Some Terminal Speeds
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Process for Problem-Solving
n Analytical Method

n The process used so far
n Involves the identification of well-behaved 

functional expressions generated from 
algebraic manipulation or techniques of 
calculus
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Analytical Method
n Apply the method using this procedure:

n Sum all the forces acting on the particle to 
find the net force, SF

n Use this net force to determine the 
acceleration from the relationship a =SF/m

n Use this acceleration to determine the 
velocity from the relationship dv/dt = a

n Use this velocity to determine the position 
from the relationship dx/dt = v
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Analytic Method, Example
n Applying the procedure:

n Fg = may = - mg
n ay = -g and dvy / dt = -g
n vy(t) = vyi – gt
n y(t) = yi + vyi t – ½ gt2
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Numerical Modeling
n In many cases, the analytic method is 

not sufficient for solving “real” problems
n Numerical modeling can be used in 

place of the analytic method for these 
more complicated situations

n The Euler method is one of the simplest 
numerical modeling techniques
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Euler Method
n In the Euler Method, derivatives are 

approximated as ratios of finite 
differences

n Dt is assumed to be very small, such 
that the change in acceleration during 
the time interval is also very small
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Equations for the Euler 
Method

( )

( )
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Euler Method Continued
n It is convenient to set up the numerical 

solution to this kind of problem by 
numbering the steps and entering the 
calculations into a table

n Many small increments can be taken, 
and accurate results can be obtained by 
a computer
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Euler Method Set Up
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Euler Method Final
n One advantage of the method is that the 

dynamics are not obscured
n The relationships among acceleration, force, 

velocity and position are clearly shown
n The time interval must be small

n The method is completely reliable for 
infinitesimally small time increments

n For practical reasons a finite increment must be 
chosen

n A time increment can be chosen based on the 
initial conditions and used throughout the problem

n In certain cases, the time increment may need to be 
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Accuracy of the Euler Method
n The size of the time increment influences the 

accuracy of the results
n It is difficult to determine the accuracy of the 

result without knowing the analytical solution
n One method of determining the accuracy of 

the numerical solution is to repeat the 
solution with a smaller time increment and 
compare the results
n If the results agree, the results are correct to the 

precision of the number of significant figures of 
agreement
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Euler Method, Numerical 
Example
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Euler Method, Numerical 
Example cont.
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