Chapter 2

Motion in One Dimension

Kinematics

- Describes motion while ignoring the agents that caused the motion
- For now, will consider motion in one dimension
- Along a straight line
- Will use the particle model
- A particle is a point-like object, has mass but infinitesimal size

Position

- Defined in terms of a frame of reference
- One dimensional, so generally the x - or y axis
- The object's position is its location with respect to the frame of reference

Position-Time Graph

- The position-time graph shows the motion of the particle (car)
- The smooth curve is a guess as to what happened between the data points

Displacement

- Defined as the change in position during some time interval
- Represented as Δx

$$
\Delta x=x_{f}-x_{i}
$$

- SI units are meters (m) Δx can be positive or negative
- Different than distance - the length of a path followed by a particle

Vectors and Scalars

- Vector quantities need both magnitude (size or numerical value) and direction to completely describe them
- Will use + and - signs to indicate vector directions
- Scalar quantities are completely described by magnitude only

Average Velocity

- The average velocity is rate at which the displacement occurs

$$
v_{\text {average }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{\Delta t}
$$

- The dimensions are length / time [L/T]
- The SI units are m/s
- Is also the slope of the line in the position - time graph

Average Speed

- Speed is a scalar quantity
- same units as velocity
- total distance / total time
- The average speed is not (necessarily) the magnitude of the average velocity

Instantaneous Velocity

- The limit of the average velocity as the time interval becomes infinitesimally short, or as the time interval approaches zero
- The instantaneous velocity indicates what is happening at every point of time

Instantaneous Velocity, equations

- The general equation for instantaneous velocity is

$$
v_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

- The instantaneous velocity can be positive, negative, or zero

Instantaneous Velocity, graph

- The instantaneous velocity is the slope of the line tangent to the x vs. t curve
- This would be the green line
- The blue lines show that as Δt gets smaller, they
 approach the green line

Instantaneous Speed

- The instantaneous speed is the magnitude of the instantaneous velocity
- Remember that the average speed is not the magnitude of the average velocity

Average Acceleration

- Acceleration is the rate of change of the velocity

$$
\bar{a}_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x f}-v_{x i}}{\Delta t}
$$

- Dimensions are $\mathrm{L} / \mathrm{T}^{2}$
- SI units are m/s²

Instantaneous Acceleration

The instantaneous acceleration is the limit of the average acceleration as Δt approaches 0

$$
a_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t}=\frac{d v_{x}}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Instantaneous Acceleration --

graph

- The slope of the velocity vs. time graph is the acceleration
- The green line represents the instantaneous acceleration
- The blue line is the
 average acceleration

Acceleration and Velocity, 1

- When an object's velocity and acceleration are in the same direction, the object is speeding up
- When an object's velocity and acceleration are in the opposite direction, the object is slowing down

Acceleration and Velocity, 2

- The car is moving with constant positive velocity (shown by red arrows maintaining the same size)
- Acceleration equals zero

Acceleration and Velocity, 3

- Velocity and acceleration are in the same direction
- Acceleration is uniform (blue arrows maintain the same length)
- Velocity is increasing (red arrows are getting longer)
- This shows positive acceleration and positive velocity

Acceleration and Velocity, 4

- Acceleration and velocity are in opposite directions
- Acceleration is uniform (blue arrows maintain the same length)
- Velocity is decreasing (red arrows are getting shorter)
- Positive velocity and negative acceleration

Kinematic Equations -summary

Table 2.2

Kinematic Equations for Motion of a Particle Under Constant Acceleration

Equation

$$
\begin{aligned}
v_{x f} & =v_{x i}+a_{x} t \\
x_{f} & =x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \\
x_{f} & =x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2} \\
v_{x f} & =v_{x i}{ }^{2}+2 a_{x}\left(x_{f}-x_{i}\right)
\end{aligned}
$$

Information Given by Equation

Velocity as a function of time
Position as a function of velocity and time
Position as a function of time
Velocity as a function of position

Note: Motion is along the x axis.

Kinematic Equations

- The kinematic equations may be used to solve any problem involving onedimensional motion with a constant acceleration
- You may need to use two of the equations to solve one problem
- Many times there is more than one way to solve a problem

Kinematic Equations, specific

- For constant $a, v_{x f}=v_{x i}+a_{x} t$
- Can determine an object's velocity at any time t when we know its initial velocity and its acceleration
- Does not give any information about displacement

Kinematic Equations, specific

- For constant acceleration,

$$
\bar{v}_{x}=\frac{v_{x i}+v_{x f}}{2}
$$

- The average velocity can be expressed as the arithmetic mean of the initial and final velocities

Kinematic Equations, specific

- For constant acceleration,

$$
x_{f}=x_{i}+\bar{v} t=x_{i}+\frac{1}{2}\left(v_{x i}+v_{f x}\right) t
$$

- This gives you the position of the particle in terms of time and velocities
- Doesn't give you the acceleration

Kinematic Equations, specific

- For constant acceleration,

$$
x_{f}=x_{i}+v_{x i} t+\frac{1}{2} a_{x} t^{2}
$$

- Gives final position in terms of velocity and acceleration
- Doesn't tell you about final velocity

Kinematic Equations, specific

- For constant a_{1}

$$
v_{x f}^{2}=v_{x i}^{2}+2 a_{x}\left(x_{f}-x_{i}\right)
$$

- Gives final velocity in terms of acceleration and displacement
- Does not give any information about the time

Graphical Look at Motion displacement - time curve

- The slope of the curve is the velocity
- The curved line indicates the velocity is changing
- Therefore, there is an acceleration

(a)

Graphical Look at Motion velocity - time curve

- The slope gives the acceleration
- The straight line indicates a constant acceleration

(b)

Graphical Look at Motion acceleration - time curve

- The zero slope indicates a constant acceleration

(c)

Freely Falling Objects

- A freely falling object is any object moving freely under the influence of gravity alone.
- It does not depend upon the initial motion of the object
- Dropped - released from rest
- Thrown downward
- Thrown upward

Acceleration of Freely Falling Object

- The acceleration of an object in free fall is directed downward, regardless of the initial motion
- The magnitude of free fall acceleration is $g=$ $9.80 \mathrm{~m} / \mathrm{s}^{2}$
- g decreases with increasing altitude
- g varies with latitude
- $9.80 \mathrm{~m} / \mathrm{s}^{2}$ is the average at the Earth's surface

Acceleration of Free Fall, cont.

- We will neglect air resistance
- Free fall motion is constantly accelerated motion in one dimension
- Let upward be positive
- Use the kinematic equations with $a_{y}=g$ $=-9.80 \mathrm{~m} / \mathrm{s}^{2}$

Free Fall Example

- Initial velocity at A is upward (+) and acceleration is $g\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- At B, the velocity is 0 and the acceleration is $g\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- At C, the velocity has the same magnitude as at A, but is in the opposite direction
- The displacement is -50.0 m (it ends up 50.0 m below its starting point)

Motion Equations from Calculus

- Displacement equals the area under the velocity - time curve $\lim _{\Delta t_{n} \rightarrow 0} \sum_{n} v_{x n} \Delta t_{n}=\int_{t_{i}}^{t_{f}} v_{x}(t) d t$
- The limit of the sum is a definite integral

Kinematic Equations - General Calculus Form

$$
\begin{aligned}
& a_{x}=\frac{d v_{x}}{d t} \\
& v_{x f}-v_{x i}=\int_{0}^{t} a_{x} d t \\
& v_{x}=\frac{d x}{d t}
\end{aligned}
$$

$$
x_{f}-x_{i}=\int_{0}^{t} v_{x} d t
$$

Kinematic Equations Calculus Form with Constant Acceleration

- The integration form of $v_{f}-v_{i}$ gives

$$
v_{x f}-v_{x i}=a_{x} t
$$

- The integration form of $x_{f}-x_{i}$ gives

$$
x_{f}-x_{i}=v_{x i} t+\frac{1}{2} a_{x} t^{2}
$$

General Problem Solving Strategy

- Conceptualize
- Categorize
- Analyze
- Finalize

Problem Solving Conceptualize

- Think about and understand the situation
- Make a quick drawing of the situation
- Gather the numerical information
- Include algebraic meanings of phrases
- Focus on the expected result
- Think about units
- Think about what a reasonable answer should be

Problem Solving - Categorize

- Simplify the problem
- Can you ignore air resistance?
- Model objects as particles
- Classify the type of problem
- Try to identify similar problems you have already solved

Problem Solving - Analyze

- Select the relevant equation(s) to apply
- Solve for the unknown variable
- Substitute appropriate numbers
- Calculate the results
- Include units
- Round the result to the appropriate number of significant figures

Problem Solving - Finalize

- Check your result
- Does it have the correct units?
- Does it agree with your conceptualized ideas?
- Look at limiting situations to be sure the results are reasonable
- Compare the result with those of similar problems

Problem Solving - Some Final Ideas

- When solving complex problems, you may need to identify sub-problems and apply the problem-solving strategy to each sub-part
- These steps can be a guide for solving problems in this course

