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Generalities on the Infinite Product

Definition

Let (an)n be a sequence of complex numbers, a, # 0 for all n € N
n

and let (pn)n be the sequence defined by p, = H ak.
k=0
We say that the infinite product H an is convergent if the
n>0
sequence (pn)n converges to a non zero complex number and we

—+0o0 n

denote H ap = lim H ak.

n——+00
n=0 k=0
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Generalities on the Infinite Product

1 1
QIfa,=1— ——, then p, = —— —— 0 and the infinite
n

+1' n+1 ns+oo
product H an is divergent.
n>1
1 n+2 n+2
Glfa,,—1+ﬁ T thnpn—Tn_I:O+ooand
the infinite product H ap is divergent.
n>1

and the infinite

1 1
Qlfa,,zl——z,n22,thenp,,:n+
n

product H an is divergent.
n>1
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Generalities on the Infinite Product

Remark 1 :
If the infinite product a, is convergent, then |lim a, =1.
p [Irz12n g im
lim a,= Ilim Pn_ _ 1.) The converse is not true. It suffices
n——+o00 n——+00 pn 1

to take a, =1 — 1ora,,—x with 0 < x < 1.

n+
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Generalities on the Infinite Product

Proposition

Let (an)n be sequence of non zeros complex numbers. The infinite
product H an is convergent if and only if the series Z log a,, is

n>0 n>0
convergent, with log a, = In|a,| +16,, and 0, is the unique
argument of a, in the interval | — 7, ].
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Generalities on the Infinite Product

Proof
We set S5, = Z log aj, pp = = e If the series Z log ap, is
j=0 n>0
convergent to S, then lim S, =S and lim p,= e’ #0. The
n——+400 n—-+o00

infinite product is then convergent.
If the infinite product is convergent to p #0. Let A € C such that

et = p, so lim e> = e and limp— oo e5n=A = 1. Then there
n—-+oo

exists an integer N such that whenever n > N, log(e>*) is
defined. There exists a sequence (kn), € Z such that

Sp— A = log(e> ) + 2ik,.

Sn—

Since >~ tends to 1, we have

lim S, — \—2ik,m =0,

n—-+00o
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Generalities on the Infinite Product

Furthermore S,.1 — S, = log a,, tends to 0, then the sequence of
integers (kn+1 — kn)n tends also to 0, then it vanishes from a rank
Niand lim S, = X+ 2imky,.

n——+4-00

1 1 1
ap=14+—— o Jna, =In(14+ —— T E TheserlesZanls
n>0

divergent.

1 1, -1 : .
ap=1-— ?,In ap=In(1— ?) N The series Za,, is

n>2

convergent.
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Generalities on the Infinite Product

Let (an)nen be a sequence of complex numbers. We say that the

infinite product H an is convergent if there exists a rank ng € N

n>0
n

such that for n > ng, a, # 0 and lim | | ap exists and it is a
n——-00
pP=no
non zero complex number.

We say that the infinite product H(l + up) is absolutely
n>0

convergent if the infinite product H(l + |un|) is convergent.
n>0
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Generalities on the Infinite Product

Proposition

An infinite product absolutely convergent is convergent.

Let (up)n be a sequence of non negative real numbers. The series

Z u, converges if and only if the infinite product H(l + up)

n>0 n>0
converges.
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Generalities on the Infinite Product

Proof

n
We have, for all x > 01+ x < eX. We denote S, = Euk and

k=0
n

Pn = H(l + uk). We have
k=0

n n
1+5n:1+zuk§ H(1+uk)§e5".
k=0 k=0

(This lemma results also because the series E u, and

n>0
In(1
Z In(1 4 up) have the same nature since lim In(1 +x) =1) O
>0 x—0t X
Proof of the Proposition 1.5
“+o0o
If the infinite product is absolutely convergent, the series Z lup| is

n=0
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Generalities on the Infinite Product

To prove that the infinite product H(l + uy) is convergent, it

n>0
suffices to prove that the series Z |In(1 + up)| is convergent.
n>ng
=
For |z| <L In(1+42) = Z P z"1 = zh(z). For |z| < 3,

|h(z)] < M. Then |In(1 + u,,)| < M|up|, for n > ng, thus the series

Z |In(1 + up)| is convergent.
n>0
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Generalities on the Infinite Product

If the infinite product H a, is absolutely convergent, then for all
n>0
permutation o of N, the infinite product H a,(n) Is convergent.
n>0

Proposition

Let (up)n be a sequence of real numbers such that 0 < u, <1,
Vn e N.
The infinite product H(l — up) is convergent if and only if the
n>0
series Z un is convergent.
n>0
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Generalities on the Infinite Product

Proof
n

The sequence (p, = H(l — ug))n is decreasing and non negative,

k=0
then it converges and 0 < p, < e” 2 k=0 Uk
—+00
If Z up = 400, then lim p, =0 and then the infinite product
0 n—-400
n=
is divergent.
If the series Z u, converges. Let 0 < e < % there exists ng € N
n>0
“+oo
such that Z up < €.
n=ng
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Generalities on the Infinite Product

So for all N > ng,

N N N
0<1- H (1=up) = [1- H (1-up)| < H (14up)-1< el Un ] <

n=ng n=ng n=ng
N
0< pny—pnv=pn(1— J[ (1= un))<2epn,.
n=ng+1

It results that 0 < pp(1 — 2¢) and py > (1 — 2¢)pp,. The
sequence (pp)n is decreasing and bounded above by p,, (1 — 2¢),
then it converges to a number L > 0, which proves that the infinite

product H(l — up) is convergent.
n>0
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Generalities on the Infinite Product

(This lemma results also from the fact that the series Z u, and
n>0
the series Z In(1 — up,) have the same nature, because

n>0
i M= x) 1)
x—0 X
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Infinite Product of Holomorphic Functions

Let (fy)n be a sequence of of bounded functions defined on a non
empty subset E of C. We assume that the series Z |fn| converges
n>1
uniformly on E, then the infinite product H(l + f,) converges
n>0
uniformly on E to a function f. Furthermore f(so) = 0 if and only
if 1 4 fpy(so0) = O for some integer ny.

Proof .
Let P, = H(l + fp). Forn < m,
p=1
m
lpn — Pm| = pnll — H (14 f,)|. For 0 <& < 3, there exists an
p=n+1
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Infinite Product of Holomorphic Functions

11— H 2))| < H 1+[f(2)])—1 < eXnnali_1 < &1 < 2¢, ¥
n+1 n+1

Then |pp(2)] < e2i-1 i@l < M < 400, because the series
converges uniformly on E.

If m>n>no, |pa(2) — pm(z)| < 2ceM

The sequence of functions (p,)n is then a Cauchy's sequence for
the topology of uniform convergence, then it converges uniformly
on E.
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Infinite Product of Holomorphic Functions

Let f(z) = Jf[o(l + fn(2)). For z € E and m > n > ny,
n=0
- [T+ 6 < 2=
n0+1
ThenH z))|>1—-2>0.
no+1
pm(2) = |pm(2)] [T (1 + 6(2)] > [pry(2)I(1 — 2).

no+1
If there exists z € E such that f(z) = 0, then pp,(z) = 0 and there

exists j < ng such that 1+ fj(z) = 0. The converse is false.
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Infinite Product of Holomorphic Functions

With the same notations as in theorem 2.1, if f(zg) = 0 and if f is
not the zero function (f # 0), there exists a finite number of index
J €N, such that 1+ fj(z) = 0.

Let (fn)n be a sequence of holomorphic functions on a domain Q.
We assume that f, # 0 whenever n and the series ) -, |1 — f,(2)|
converges uniformly on any compact subset of Q, then the infinite
product [ [~ fn converges uniformly on any compact subset of Q.
The limit f is holomorphic on Q. The function f # 0 and if

f(z0) = 0, then fo(z0) = 0O for at least one index n and the order of
multiplicity of f at zg is the sum of the orders of multiplicities of zg
in the different factors.

W
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Infinite Product of Holomorphic Functions

Proof .

We set uj(z) = fj(z) — 1 and p,(z) = H fi(z). The sequence
=0
(pn)n converges uniformly on any compact subset of Q, then the

+oo
function f defined by f = H fi(z) is holomorphic on Q.
j=0

Forz € Q, |f(2)] > |H fi(z)|(1 — 2¢) with ng chosen such that

Z 1-fi(z)] <e, 0O0<e< % The others results are deduced

no+1
from the previous theorem.
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Infinite Product of Holomorphic Functions

/

With the same conditions as in theorem 2.3, — Z = and the

series converges uniformly on any compact subset of Q Which not
meeting the set of zeros of f.

Proof

The sequence (pn(2) =[], fj(2))n converges uniformly on any
compact subset of Q to f. The sequence (p,), converges also
uniformly on any compact subset of Q to f’. Let K be a compact
which not intersects the set of zeros of f and M > 0 such that on

1 2
K, ]?| <M and |p, —f| < o for n large enough, then ]p—] <2M
n

on K for n large enough.
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Infinite Product of Holomorphic Functions

/ f‘/ f
B 2l= \My < 2M?| D), — paf.
Pn pnf
p/ /
Then the sequence (=), converge uniformly on K to -
Pn
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Infinite Product of Holomorphic Functions

1. Let a € C* be such that |a| < 1. We consider the infinite
—+o00
product H(l + a"z). The series Z |a"z| converges uniformly on
n>1 n=1
+o00
any compact subset of C. The set of zeros of H(l +a"z) is
n=1
{Z}; ne N}
2. Let fy(z) = (1 + Z). The infinite product H fa(z) converges
n>1
only at 0.
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Infinite Product of Holomorphic Functions

3. Let fp(z) = (1 + E)e_%. The infinite product H fn(2)
n
n>1
converges uniformly on any compact subset of C because

|fa(2) — 1] < |i—';l\/l, for n large enough

2
4. Let f be the function f(z) =z H 1-— rZT) f is holomorphic

n=1
on C and f(z) =0 if and onIy if ze Z.

=1+ Z 22 2= = mcotannz, (cf exercise 1,

f
chapter 6). Then for z € C\ Z, ( (Z) )Y =0= f(z) = Csinnz

SinTtz
f(z) = 72
on C. But —= | |(1 — —5) — 1. It results then C = 7. We
z i n z—0

deduce the Euler's formula.

+00
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Infinite Product of Holomorphic Functions

5. We consider the geometric series E z" where z = €279,

n>1
Img > 0. The series Zz" is absolutely convergent. We can then
n>1
define H(l + z") and H(l — z"). The function
n>1 n>1

—+00 +00
H(l +2z") = Zp(n)z” is holomorphic on the unit disc, p(n) is
n=1 n=0

the number of p;rtitions of the integer n (i.e. the number of
(m,...,ns) such that ny +...ns = n).
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Factorization of Entire Functions

Definition

We define the following functions

Eo(2)=1-2 E(2)=(1—2)e% En(z)=(1-2)e>" s

En(z) is an entire function. 1 is a simple zero of E,,. E, is called

the nth elementary Weierstrass's factor.
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Factorization of Entire Functions

For|z| < 1, |Ex(2) — 1] < |z|™FL.
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Factorization of Entire Functions

Proof } ;
E,’,(z):—ezfnzlzf +(1-2")e Lja T = gneXin )
Since Ep(z) — :/ E/(w)dw, w = tz, t € [0,1], we have
[0,2]

/ n+1 ' m i) ge
En(z)—1=z - E (tz)dt = —z A tMe~=1 J dt.
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Factorization of Entire Functions

o

1 n
E,(1)—1= —/ t"e2i-1 7 dt = —1, because E,(1) =0.
0

1 0 H
For |2| < 1, |1 — Ex(2)| < yz|"+1/ £eX51 5 g < |2|nH
0
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Factorization of Entire Functions

Let (an)n be a sequence of complex numbers, a, # 0 and
lim |a,| = 4o00. Let (kn)n be a sequence of positive integers
n—-+00

+o0o
r
chosen such that E (—)tk» < 400, whenever r > 0, where
I'n
n=1

- z
rn = |an|. Then the infinite product H Ey (—) converges
an
n>1
uniformly on any compact of C. The function

+o00 e
f(2) = T] B ()
n=1 n

is holomorphic on C and the set of zeros of f, Zr is the set
{an; n € N}. Furthermore the multiplicity of a zero a of f is equal
to the number of integers n such that a, = a.
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Factorization of Entire Functions

Remark 2 :

For all r > 0, there exists a rank ng such that for n > ng, i < %
and the condition of convergence in the theorem is realized with
kn = n.
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Factorization of Entire Functions

Proof 5 5 .

By lemma 3.2, we have |1 — Ej (—)| < |—|'tk < (=) . For
an dn I'n

|z| < r < rp, the series Z |1 — E,(z)| converges uniformly on any

n>1

. : z
compact subset C. The theorem is deduced since Ey, (—) has only
an
a, as a simple zero.
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Factorization of Entire Functions

Remark 3 :
“+o0o

If Z - < 400, we can take k, = 0. The canonical product is

n=1"
+oo 2
f(z) =0~ =)
n=1 n
+oo 1
If ’1:[1 ) < 400, we can take k, = 1 and
+oo 7
f(2) = [[a-D)ew
n=1 n
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Factorization of Entire Functions

Theorem (Weierstrass’s Factorization Theorem)

Let f be an entire function and A= {as,...,an,...} the zeros of f
repeated as far as their order of multiplicities. Then there exists an
entire function g and a sequence of integers (kn)n such that

f(z) = 8@ Ex,(Z). This factorization is not unique
because there exist an infinite possible choice of k.
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Factorization of Entire Functions

Proof
If the sequence (a,), is infinite, then lim |a,| = 4o0.
n——+00

Let h be a Weierstrass's infinite product given in the previous

theorem with the sequence (a,),. The function — is holomorphic

on C without zeros. C is simply connected, then there exists
g € H(C) such that £ = e&.
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Factorization of Entire Functions

let Q be an open subset of C and A a discrete closed subset in 2.
For all mapping a: +— m(a) from A with values in N, there
exists a function f € H(Q) such thatV a € A, a is a zero of f of
order m(a) and Zr = A= {z € Q; f(z) =0}.
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Factorization of Entire Functions

Proof

We can assume that Q2 # C. For the proof it is useful to consider a
sequence (a,)n such that whenever n, a, € A and such that
whenever a € A, #{n €N, a=a,} = m(a).

First case The sequence (a,), is bounded.

Let b, € Q€ such that d(a,, Q°) = |b, — an|. Then necessary
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Factorization of Entire Functions

lim |a, — bp| =0, (1)

n—-+00

if not the sequence (a,), which is bounded has a cluster point
(accumulation point) in .
Let's prove that the function defined by the infinite product

— by, . .
H E,,(E:_ b") is a solution to the problem. Let K be a compact
n

n>1
subset of Q,

|z— byl > inf |w—-0|=d(K,Q°)>0 VzeK. (2)
weK,5¢Q
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Factorization of Entire Functions

Since lim |a, — b,y| = 0, there exists an integer N such that for
n——+00

n>N

1
20 — bnl < (K, Q). (3)

For n > N and z € K and by equations (2) and (3),
|2 = by| > 2|an — by, let [22—2"

n
z— b,
an_bn 1 n+1 .
p )—1|§(§) for n > N and z € K. Which proves
Z — bp

the theorem in the case where the sequence (a,), is bounded.

1
‘ < 5 By lemma 3.2,

| En
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Factorization of Entire Functions

We prove now that lim f(z) =1 in the case where the open
|z] =400

subset €2 is not bounded.

Since the sequence (ap), is bounded, the sequence (b,), is also

bounded. (Because ll}r_]’_’l ap — b, =0). Let M > 0 be an upper
n o0

bound of (|an|)n and of (|bs|)s. For |z| > 5M, we have

|a,,—b,,|S |an| + |bn| < 2M :17
z— b, |z| = |by] ~ M —-—M 2
an — by 1

in such a way for |z| > 5M, we have |Ej( — ) -1 < SnFT
whenever n. The infinite product converges uniformly for |z| > 5M
—b
and since  lim E,,(a" %) = E,(0) = 1, we deduce that
|z| =400 z— by
lim f(z)=1.

|z|—+o0
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Factorization of Entire Functions

Second case The sequence (a,), is not bounded.
Let a € Q different of a,, whenever n. There exists ¢ > 0 such
that |a, — a] > . We consider the function g: C\ {a} — C

1
defined by g(z) = Py The function g is holomorphic and
Z [R—

injective. The sequence (g(an))n is bounded in the open subset
g(Q2\ {a}) = Q. There exists a holomorphic function f on Q'
which vanishes only at the points (g(an))» with multiplicity m(a,)
and lim f(z) = 1. The function f o g is holomorphic on Q and

|z|—+o0
a is a removable singularity because lim f o g(z) = 1. The
z—a

function f o g gives an answer to the problem.
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Factorization of Entire Functions

Every meromorphic function on S0 is the quotient of two
holomorphic functions on 2.

Proof

Let f be a meromorphic function and let (a,), be the sequence
(may be finite) of the poles of f and m,, its multiplicity. By the
previous theorem, there exists a holomorphic function g on € such
a, is a zero of order m, of g. The function h = fg is then

holomorphic one Q and f = z
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The Gamma Euler’s Function

We consider the function f defined by

+o00 7
flz)=]J(1+ J—,)eT.
j=1

. z, =z . . .
The infinite product H(l + —)e 7 defines an entire function f
.
such that —n is a simple zero, whenever n € N.
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The Gamma Euler’s Function

There exists a constant v called the Euler’s constant such that
f(z—1) = ze"f(z).

: 1
<7 _ nﬂToo(z; 5=+ 1)~ 0, 5772156649).
J:

Proof
The function g(z) = f(z — 1) is holomorphic on C and every non

positive integer (—n), n € N is a simple zero, then the functions
zf(z) and g(z) have the same zeros with the same multiplicity.
There exists then an entire function h such that
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The Gamma Euler’s Function

h(z) _ — 5
zf(z)e g(z) nﬂrroo _1(1 +— )e
For k # 1,
-1, _= k—1 —: z =

(1+Zk e~ o :(l—i—kil) p e7+%:(1+kil)e_?e%+'“%.

n z—1 —z+1 (z—1 nl zZ, __z_ L_HnL

H(l + p )e k = ze (z-1) H(]_ + E)e k+1 @ k+1 k+1
k=1 k=1
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The Gamma Euler’s Function

n

1
We prove that the sequence (Z = —In(n+ 1)), has a limit.
J

j=1
n n .
1 1 1
Zf_—ln(n—i—l):Z(f—l 1Y), But for x > 0,
] J J
_/_
0 < 5 <x then/ 7dt<—
1 +1 1
Furthermore0<x—ln(1—|—x)<— Then 0 < — —1In ji,<—,2
2 J J 2j

which is the general term of a convergent series.
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The Gamma Euler’s Function

The function I called the Gamma Euler’s function is the
meromorphic function defined by

+o0o
1 1 V4 =z
I = = ze# | | 1+ - i
(2) zeV?f(z)" T(2) ze ! (1+ j)e ’
Jj=1

. . . . . . 1
Any non positive integer is a simple pole of I', then the function ¢

is an entire function such that any non positive integer is a simple

Z€ero.
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The Gamma Euler’s Function

Mz+1)=2zl(z); Vz¢g-N

r(1)=1, f(n+1)=nl, VneN.

Nz)r(l—z)= Complement formula .

sinz

r( ) li nln* z zlnn
Z) = m n =e€ .
n—to0 z(z+1)...(z+n)’

+o0
If Rez >0, T[(z) :/ e 7L dt.
0
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The Gamma Euler’s Function

Proof

=(z+ l)eV(ZH)f(z +1)=(z+ 1) f(z+1)

MNz+1)
1

=e"(z4+1)e"f(z+ 1) = 7%f(z) = @)

2 1(1) = eVI}(l) and f(1)e" = £(0) = 1, then £(1) = e,

NM1)=1,M(z+1)=2zM(z) and I(n+ 1) = n!T(1) = nl.
3.
1 1

rz)r(l-=z) —zl(z)[(—2)
= _716721’(2)(—2)6_721‘(—2)

sinmTz

= 2f()f(-2) = T2,




The Gamma Euler’s Function

then F(%) = vr

An other method 1
We compare sin 7z and 7F(z)r(1 =) Since the set of zeros of
sin7z is Z and are simple zeros. The same for the function

1

m, there exists an entire function h such that

1wy _sinmz
M1 —2) p )

But we have
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The Gamma Euler’s Function

. “+o00
S'”ﬂ“ :zl‘[(1+£)eff (5)
o
1 +o00 > ( ) +o00 1— 2 71 —Z
— =z [[(+5)e k(1—-2)e" A [ (1+ e k)
Mz)r(1- =z 1(1:[1 k kI:[:l k

In taking the logarithmic derivative of (4) and (5) we find
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The Gamma Euler’s Function

400 oo
TR S R RS RIS Y
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The Gamma Euler’s Function

1 1 1 1 1 1

21—k 'k z-1-k k+1 k k1
+00 too
1 1 1 1 1
K = Y- _ Y
=2 G+ 71 Gt
k=1 k=2
and h' = 0. Since Iimoh(z):O, then h =0 and
z—
1 _sin7rz
rz)r(1—=z) T

Then
i‘”(}( k i 1)
k=1
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The Gamma Euler’s Function

1

r(z)
n —z 1
nli>r—|r—100 2eZ(Xk=1 5—Inn) kl_[l(l + %)eT = @ The convergence is
uniform one any compact of C\ (—N).
n z+k:z(z—|—1)...(z+n)'then
n? k nZn!

k=1
1
V4

4. = ze"*f(z) and

n

= lim
) n—+oo n?n!

r(

(z+1)...(z+n).
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The Gamma Euler’s Function

+o0
5. If Rez > 0, the integral / t?~Le™t dt is convergent and

0
defines a holomorphic function on {z € C; Rez > 0}.

BLEL Mongi Infinite Products



The Gamma Euler’s Function

" t
The sequence (f,), defined by f,(z) = / (1- ;)"tz*1 dt
0

“+o0o
converges to / e tt?71 dt, whenever Rez > 0.
0

v

lim f,(z) =T(z), whenever Rez > 0.
n—-+00
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The Gamma Euler’s Function

Proof of lemma 4.4

ForO<t<nO<e'—(1-£i)"< 2% According to the
+oo
convergence of the integral e tt?71 dt, for Rez > 0, then

0
Ve > 0, 3 ng such that if n > ng

—+o00 —+o00 c
/ et 1 dt’ g/ et dt < 2,
n n 3

with z = x +iy.
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The Gamma Euler’s Function
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The Gamma Euler’s Function

no t 1 1 no 1
/ (e7t—(1—)"t* dt’ < / t*T1 dt, then there exists
0 n 2n 0
ni such that, whenever n > ny > ng,

o t €

(1 - )Mt dt’ <=

| et ==t < 5
n t 1 +oo 1 €
/ (et —(1- E)")tZ* dt‘g / e 't dt < 3

0 0

+0o0
€
/ e tt7 1 dt‘ < 3 then the sequence (f,(z)), converges to
n

+oo
/ e tt* L dt.
0
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Proof of lemma 4.5
We introduce a new variable 7 = % An integration by part of the
integral yields

1 n? 1
fn(z) - nZ/ (]. — 7_)'77_2—1 d’]’ = n/ (1 _ 7_)”—17_2 dT
0 z Jo
We repeat the same operation, we find

zZ zZ

fn(z) = mn /1Tz+"1 dr = mhn
" z(z4+1)...(z4+n-1) Jg zZ(z+1)...(z+n)
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i r/(z) i rl(z+%) B +oo 1 +o0o 1
dz(r(z))+dz<r(z+é)> o ;(”+Z)2+§)(n+z+é)2
+o0 1 +o0 1

- 4(;(2n+22)2+2)(2n+22+1
_ d (T'(2z)
B 42 +2z B E(F(Zz))'
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This yields that ['(2)[(z + 3) = e**T°r(2z).

Forz =1, T(3) = V. T() =T2) = 1. T(3) = 31(}) = V3,

then g—l—b:%lnﬂ, a+b:%|n7r—|n2:>a:—2ln2,
b= %ImrJrIn 2. Then we find the Stirling formula

r(%)r(zz) =227 (z + %). (6)
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Proposition
r r +o0 ty—l
M = / ———— dt, whenever y > 0 and x > 0.
FMx+y) Jo @+t
Proof
+oo +oo
F(x)r(y) = t* et dt s¥~1e™ ds, for all x > 0 and

0 0
y > 0. The change of variable s = tv yields
+o0 +o00
FeAr(y) = / Vy_l(/ Y ~Le=tHY) dt)dv. If we set
0 0

u=t(l+v), we have
+oo +o00

re)r(y) = / v / e (14v) Y du)dv = [(x+y) /
0 0 0
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Remarks 4 :

Q@ Forx=y= % and the change of variable v = tan?6, we

deduce
1,17 z 1
[F()] :2/ dd=n=T1(3z)=7
2 0 2
Qlfy=1-x,
Frx)r(l—x) = /+OO u” du = T S for 0 <
~Jo l1+u sin(l—x)m sin(mx)’ ’
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too ya—l T
because / dx = — , for 0 < a <1, then
0 1+x sinma
r —X) = .
(x)M(1—x) P for0<x<1
3. 1
In(F'(n)) = (n—E)Inn—n—i—c—i—o(l), (7)

where c is a constant.
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Indeed, M(n+ 1) =n!, forn € N, Inn! =37, Inj,

J
/J +
J

1
2

NI

Int dt = /Z(In(j—l—t)—i—ln(j—t)) dt = /z(lnj2+|n(1—j,2)) dt = In,
0 0

where ¢; = O( )- Then

In(l'(n))zln(n—l)!:/ln Int de— ch (n—f)lnn n4

2
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For n large enough

& ~n ? fora>D0.
M(n+ a)
Proof
ar r 1
im @) na/ =11 — £)" L dt
n—-+o00 r(a+n) n—-+o0o 0

n u “+o00
= lim w1 - ) du = ule
n—-+o00 0 n 0

BLEL Mongi Infinite Products



The Gamma Euler’s Function

ar

Then lim (M) _ 4
n—+oo ['(a+ n)

Remark 5 :

If x is not an integer, we set x = n+ a, with 0 < a < 1. We find
for n large enough

F(n+a)=T(x)~T(n)n’

In use of the identity (7), we have
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Inl(x) =InT(n+a) = InT(n)+alnn+o(1)
= (n—%)lnn—n—i—q—kalnn—l—o(l)
= (X—%)Inx—x+c2+o(1).
We intend to compute the constant ¢;. By (6), we have
r(2x)r(%) =227 ()M (x + 1).

2
Furthermore

In(l'(2x)l'(%)> ~(x— %) In2x — 2x + ¢ + o(1) + In v/

and
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Therefore In /7 + 3In24 o(1) = ¢ — 5 + x5~ + o(1) = c + o(1).
Then ¢ =Inv2r and InT(x) = (x — 3) Inx — x + In V27 + o(1).
We deduce

M(x) = x " 2e*V2r(1 + o(1)). (8)

nl=(n+1)"2e " 1/21(1 + o(1)). (9)
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Remark 6 :

Mz), X 1 _
— = —— . Thenif z= th
VzeC\( N),(r(z)) kg_o(k+z)2 en if z=x >0, the
previous formula shows that the function InT is convex on ]0, +o0o[

(i.e. T is logarithmic convex on ]0, +o0f).
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Let f:]0,4+00[— R be a convex function such that
Q f(1)=0.
Q 1) — xef() v x > 0, then ef is equal to the restriction of
the function I on |0, +oc.
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Proof
Let 1 < x <2 and n € N. From the second property,

f(x+n+1)= —f—ZInx—l—k)
and

n—1

f(x+n+1)="Ff(n+1)+f(x)

X
k+1)’

because f(n+ 1) = Inn!. We use the convexity of f, we find
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f(x+n+1)—f(1+n) f(n+3)—~f(n+1)

f(n+2)—f(n+1) < < 5 < f
X
Then
n—1 X
f(x)+ (7X—|—Inx+§)(ln(l+ k—|—1) (k—l—l)))
n—1

b he two following values (v + In(n +1) — 3 -
is between the two OOW|gvaues'y k0k+1
and (v + In(n+2) k )x, this which yields that

b%

f(X) =—yx—Inx— Z(ln(l + m) m) and then

k=0
f(x) =InT(x) for 1 < x < 2 and the result is deduced by the
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