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Definition of Linear Transformation

Definition

Let V and W be two vector spaces and let T : V −→ W be an
mapping. We say that T is a linear transformation If for all
u, v ∈ V , α ∈ R

1 T (u + v) = T (u) + T (v).

2 T (αu) = αT (u).

Mongi BLEL Linear Transformations



Definition of Linear Transformation
Kernel and Image of a Linears Transformations

Matrix of Linear Transformation and the Change of Basis

Remarks

If T : V −→ W is a linear transformation then

1 T (0) = 0.

2 T (−u) = −T (u).

3 T (u − v) = T (u)− T (v).

Mongi BLEL Linear Transformations



Definition of Linear Transformation
Kernel and Image of a Linears Transformations

Matrix of Linear Transformation and the Change of Basis

Example

Select from the following functions which is a linear transformation

T1 : R3 → R2, T1(x , y , z) = (x + y + z , x − z + y)
T2 : R3 → R2, T2(x , y , z) = (xy , z)
T3 : R3 → R2, T3(x , y , z) = (x + y − 3z , z + y − 1)
T4 : R3 → R3, T4(x , y , z) = (x + y , z + y , x2)
T5 : R3 → R3, T5(x , y , z) = (x + y , z + y , 0)
T6 : R3 → R3, T6(x , y , z) = (−x + 2z , y + 2z , 2x + 2y)
T7 : R3 → R, T7(x , y , z) = x + y − z .
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Solution

T1 is a linear transformation .
T2 is not a linear transformation
T3 is not a linear transformation because T (0) ̸= 0.
T4 is not a linear transformation
T5 is a linear transformation .
T6 is a linear transformation .
T7 is a linear transformation .
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Example

Let the vector space V = Mn(R). We define the function T : V −→
R as follows: T (A) = detA.
The function T is not linear because det(A+ B) ̸= detA+ detB.
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Theorem

If T : V −→ W is a mapping, then T is a linear transformation if
and only if

T (αu + βv) = αT (u) + βT (v) ∀u, v ∈ V , α, β ∈ R.
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Remarks

1 If T : V −→ W is a linear transformation, then
T (α1u1 + . . .+ αnun) = α1T (u1) + . . .+ αnT (un).

2 If T : V −→ W is a linear transformation and S = {u1, . . . un}
is a basis of the vector space V .
The linear transformation is well defined if T (u1), . . . ,T (un)
are defined.

3 The unique linear transformations T : R −→ R are
T (x) = ax , a ∈ R.

4 The unique linear transformations T : R2 −→ R are
T (x , y) = ax + by , a, b ∈ R.
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Theorem

If A ∈ Mm,n(R), then the mapping TA : Rn −→ Rm defined by:
TA(X ) = AX for all X ∈ Rn is a linear transformation and called
the linear transformation associated to the matrix A.

Mongi BLEL Linear Transformations



Definition of Linear Transformation
Kernel and Image of a Linears Transformations

Matrix of Linear Transformation and the Change of Basis

Theorem

Let T : Rn −→ Rm be a linear transformation and let
B = (e1, . . . , en) be a basis of the vector space Rn and
C = (u1, . . . , um) a basis of the vector space Rm. Then T = TA,
where A = [ai ,j ] ∈ Mm,n(R) and its columns are in order
[T (e1)]C , . . . , [T (en)]C .
The matrix A is called the matrix of the linear transformation T
with respect to the basis B and C .
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Theorem

Let V ,W be two vector spaces and S = {v1, . . . , vn} a basis of the
vector space V and {w1, . . . ,wn} a set of vectors in the vector
space W .
There is a unique linear transformation T : V −→ W such that
T (vj) = wj for all 1 ≤ j ≤ n.
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Definition

Let T : V −→ W be a linear transformation . The set
{v ∈ V ; T (v) = 0} is called the kernel of the linear
transformation T and denoted by: ker(T).
The set {T (v); v ∈ V } is called the image of the linear
transformation T denoted by: Im(T).

Theorem

If T : V −→ W is a linear transformation, then ker(T) is a vector
sub-space of V and Im(T) is a vector sub-space of W .
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Definition

If T : V −→ W is a linear transformation then dimension the
vector space ker(T) is called the nullity of the linear
transformation T and denoted by: (nullity(T )).
The dimension of the vector space Im(T) is called the rank of the
linear transformation T and denoted by: (rank(T )).
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Example

If A ∈ Mm,n(R) and TA : Rn −→ Rm the linear transformation
defined by: TA(X ) = AX , then rank(T ) = rankA, and Im(T ) =
colA.
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Example

Let T : R3 −→ R2 be the linear transformation defined by the fol-
lowing:
T (x , y , z) = (2x − y + 3z , x − 2y + z).

(x , y , z) ∈ ker(T ) ⇐⇒
{
2x − y + 3z = 0
x − 2y + z = 0

The extended matrix of this linear system is:

[
2 −1 3
1 −2 1

∣∣∣∣ 00
]
.

Then
(x , y , z) ∈ ker(T ) ⇐⇒ x = 5y , z = −3y .

ker(T ) = ⟨(5, 1,−3)⟩.

T (x , y , z) = x(2, 1) + y(−1,−2) + z(3, 1).
Then

Im(T ) = ⟨(2, 1), (−1,−2), (3, 1)⟩ = ⟨(2, 1), (−1,−2)⟩.
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Theorem

If T : V −→ W is a linear transformation and {v1, . . . vn} is a basis
of the vector space V , then the set {T (v1), . . .T (vn)} generates
the vector space Im(T ).
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The Dimension Theorem of the Linear Transformations

If T : V −→ W is a linear transformation and if dimV = n, then

nullity(T ) + (rank(T ) = n.

i.e.
dimker(T ) + dimIm(T ) = n.
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Definition

If T : V −→ W is a linear transformation,

1 We say that T is injective if for all u, v ∈ V ,

T (u) = T (v) ⇒ u = v .

2 We say that T is surjective if Im(T ) = W .

Theorem

If T : V −→ W is a linear transformation. The linear
transformation T is injective if and only if ker(T ) = {0}.
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Corollary

If T : V −→ W is a linear transformation and
dimV = dimW = n. Then the linear transformation T is injective
if and only if T is surjective.
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Example

Give a basis of the image of and of the kernel of the following linear
transformation T : R4 −→ R4 defined by following:

T (x , y , z , t) = (x − y , 2z + 3t, y + 4z + 3t, x + 6z + 6t).
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Solution

(x , y , z , t) ∈ Ker(T ) ⇐⇒ x = y = 3t = −2z .
Then (6, 6,−3, 2) is a basis the kernel of the linear transformation.
The image of the linear transformation T is spanned by columns of
the following matrix 

1 −1 0 0
0 0 2 3
0 1 4 3
1 0 6 6


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and the matrix 
1 −1 0 0
0 1 4 3
0 0 1 3

2
0 0 0 0


is a row reduced form of this matrix. Then

{(1, 0, 0, 1), (−1, 0, 1, 0), (0, 2, 4, 6)}

is a basis of the image of the linear transformation.
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Example

Let V ,W be two vector spaces and T : V −→ W a linear transfor-
mation.
If the linear transformation injective and S = {u1, . . . , un} is a set
of linearly independent vectors, then the set {T (u1), . . . ,T (un)} is
a set of linearly independent vectors.
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Solution

a1T (u1) + . . .+ anT (un) = 0 ⇐⇒ T (a1u1 + . . .+ anun) = 0

⇐⇒ a1u1 + . . .+ anun = 0

since T is injective and since the set S is linearly independent, then
a1 = . . . = an = 0.
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Theorem

Let T : V −→ W be a linear transformation and let
B = (u1, . . . , un) be a basis of the vector space V and
C = (v1, . . . , vm) basis of the vector space W . Then there is a
unique matrix [T ]CB such that its columns [T (u1)]C , . . . , [T (un)]C .

The matrix [T ]CB is called the matrix of the linear transformation T
with respect to the basis B and the basis C . and satisfies

[T (v)]C = [T ]CB [v ]B ; ∀v ∈ V .

If V = W and B = C we write the matrix [T ]C instead of [T ]CB .
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Example

Let T : R3 −→ R2 be the linear transformation defined by the fol-
lowing:
T (x , y , z) = (2x − y + 3z , x − 2y + z).
The matrix of the linear transformation T with respect to the stan-

dard basis of the vector space R3 is:

(
2 −1 3
1 −2 1

)
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Example

Find the matrix of the linear transformation with respect to the
standard basis of the vector space R3 and find Tj(x , y , z) if

1 T1((1, 0, 0)) = (1, 1, 1), T1((0, 1, 0)) = (1, 2, 2),
T1((0, 0, 1)) = (1, 2, 3)

2 T2((1, 0, 0)) = (1,−1, 1), T2((0, 1, 0)) = (−1, 1, 1),
T2((0, 0, 1)) = (−1,−1, 1)

3 T3((1, 0, 0)) = (1, 1, 1), T3((0, 1, 0)) = (1, 2, 1),
T3((0, 0, 1)) = (2,−2, 1).
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Solution

1

1 1 1
1 2 2
1 2 3

,

T1(x , y , z) = (x + y + z , x + 2y + 2z , x + 2y + 3z).

2

 1 −1 −1
−1 1 −1
1 1 1

,

T2(x , y , z) = (x − y − z ,−x + y − z , x + y + z).

3

1 1 2
1 2 −2
1 1 1

,

T3(x , y , z) = (x + y + 2z , x + 2y − 2z , x + y + z).
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Theorem

If T : V −→ V is a linear transformation and B and C are basis of
the vector space V , then

[T ]B = BPC [T ]C CPB .
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Example

Let T : R3 −→ R3 be the linear transformation such that its matrix
with respect to the standard basis C of the vector space R3 is

[T ]C =

−3 2 2
−5 4 2
1 −1 1


Find the matrix of the linear transformation [T ]B with respect to
the following basis B

B = {u = (1, 1, 1), v = (1, 1, 0), w = (0, 1,−1)}.
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Solution

The matrix of the linear transformation with respect to the basis B
and C is

CPB =

1 1 0
1 1 1
1 0 −1


Then the matrix of the linear transformation with respect to the
basis S and the basis B is

BPC = SP
−1
B =

−1 1 1
2 −1 −1
−1 1 0


and

[T ]B = BPC [T ]CCPB =

1 0 0
0 −1 0
0 0 2

 .
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Example

Let the linear transformation T : R3 −→ R3 defined by the following:

T (x , y , z) = (3x + 2y , 3y + 2z , 9x − 4z).

1 Give the matrix of the linear transformation T .

2 Give the kernel of and image of the linear transformation T .

3 Find the matrix the linear transformation T with respect to
the basis S = {(0, 0, 1), (0, 1, 1), (1, 1, 1)}.
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Solution

1 The matrix of the linear transformation T is

A =

3 2 0
0 3 2
9 0 −4


2 The extended matrix of the linear system AX = 0 is:3 2 0

0 3 2
9 0 −4

∣∣∣∣∣∣
0
0
0

. This matrix is equivalent to the matrix3 2 0
0 1 0
0 0 1

∣∣∣∣∣∣
0
0
0

.
Then ker(T ) = {0} and the image of the linear
transformation T is: R3.

3 Let P =

0 0 1
0 1 1
1 1 1

.

P−1 =

 0 −1 1
−1 1 0
1 0 0

.

Then the matrix of the linear transformation T with respect

to the basis S is: P−1AP =

−6 −9 0
2 3 0
0 2 5

.
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Example

Let u1 =
1
3(1, 2, 2), u2 =

1
3(2, 1,−2), u3 =

1
3(2,−2, 1).

1 Prove that {u1, u2, u3} is an orthonormal basis of the vector
space R3.

2 We define the linear transformation T : R3 7→ R3 by the
following:
T (e1) = u1, T (e2) = u2 and T (e3) = u3, where {e1, e2, e3}
the standard basis of the vector space R3.
Find P the matrix of the linear transformation T with respect
to the basis {e1, e2, e3} and find T (x , y , z).

3 We define the linear transformation S : R3 7→ R3 by the
following:
S(x , y , z) = (−x + 2z , y + 2z , 2x + 2y).
Prove that S is a linear transformation and find its matrix A
with respect to the basis {e1, e2, e3}.

4 Find the matrix S with respect to the basis {u1, u2, u3} and
find An, for all n ∈ N.
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Solution

1 As the determinant ∣∣∣∣∣∣
1 2 2
2 1 −2
2 −2 1

∣∣∣∣∣∣ = −27

then {u1, u2, u3} is a basis and as ∥u1∥ = ∥u2∥ = ∥u3∥ = 1
and ⟨u1, u2⟩ = ⟨u1, u3⟩ = ⟨u2, u3⟩ = 0,
then {u1, u2, u3} is an orthonormal basis of the vector space
R3.

2

P =
1

3

1 2 2
2 1 −2
2 −2 1


and

T (x , y , z) =
1

3
(x + 2y + 2z , 2x + y − 2z , 2x − 2y + z).

3 It is easy to prove that S is a linear transformation

A =

−1 0 2
0 1 2
2 2 0

 .

4 The matrix P is the matrix of the linear transformation with
respect to the basis {u1, u2, u3} and the basis {e1, e2, e3} and
if B is the matrix of the linear transformation with respect to
basis {u1, u2, u3}, then

B = P−1AP.

P−1 = PT = P and

B =

3 0 0
0 −3 0
0 0 0

 .

Bn = 3n

1 0 0
0 (−1)n 0
0 0 0

 .

An = PBnP.
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Example

Let the matrix A =

 2 −2 3
−2 2 3
3 3 −3

. We define the linear trans-

formation T : R3 7→ R3 defined by the matrix A with respect to the
standard basis (e1, e2, e3) of the vector space R3.

1 Find T (x , y , z).

2 Find an orthogonal basis (u1, u2, u3) of the vector space R3

such that T (u1) = 3u1 and T (u2) = 4u2.

3 Find the matrix of the linear transformation T with respect to
the basis (u1, u2, u3).

4 We define the linear transformation S : R3 −→ R3 by the
following: S(e1) = u1, S(e2) = u2 and S(e3) = u3.
Find the matrix P of the linear transformation S with respect
to standard basis.
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1 Prove that the matrix P has an inverse and find P−1.

2 Let the linear transformation U defined by the matrix P−1

with respect to the standard basis.
Find U(uk) for all k = 1, 2, 3.

3 Let F = U ◦ T ◦ S .
Find F (e1), F (e2), F (e3).
Find the matrix of the linear transformation F and conclude
the value An for all n ∈ N.
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Solution

1

T (x , y , z) = (2x − 2y + 3z ,−2x + 2y + 3z , 3x + 3y − 3z).

2 Let u = (x , y , z).

T (u) = 3u ⇐⇒


−x − 2y + 3z = 0
−2x − y + 3z

3x + 3y − 6z = 0
⇐⇒ x = y = z .

We take u1 = (1, 1, 1).

T (u) = 4u ⇐⇒


−2x − 2y + 3z = 0
−2x − 2y + 3z

3x + 3y − 7z = 0
⇐⇒

{
x = −y
z = 0

.

We take u2 = (1,−1, 0) and we can choose u3 = (1, 1,−2).
3 The matrix of the linear transformation T with respect to

basis (u1, u2, u3) is

[T ] =

3 0 0
0 4 0
0 0 −6


4

P =

1 1 1
1 −1 1
1 0 −2


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1 the matrix P has an inverse, then (u1, u2, u3) is a basis .

P−1 = 1
6

2 2 2
3 −3 0
1 1 −2

.

2 U(u1) = (1, 0, 0), U(u2) = (0, 1, 0), U(u3) = (0, 0, 1).

3 F = U ◦ T ◦ S .
F (e1) = U ◦ T (u1) = 3U(u1) = 3(1, 0, 0),
F (e2) = U ◦ T (u2) = 4U(u2) = 4(0, 1, 0),
F (e3) = U ◦ T (u3) = −6U(u3) = −6(0, 0, 1).
The matrix of the linear transformation F is

D =

3 0 0
0 4 0
0 0 −6

 .

An = PDnP−1.
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