Linear Transformations

Mongi BLEL

King Saud University

January 2, 2024

Table of contents

- Definition of Linear Transformation
- 2 Kernel and Image of a Linears Transformations
- 3 Matrix of Linear Transformation and the Change of Basis

Definition of Linear Transformation

Definition

Let V and W be two vector spaces and let $T:V\longrightarrow W$ be an mapping. We say that T is a linear transformation If for all $u,v\in V$, $\alpha\in\mathbb{R}$

$$T(u+v) = T(u) + T(v).$$

$$T(\alpha u) = \alpha T(u).$$

Matrix of Linear Transformation and the Change of Basis

Remarks

If $T: V \longrightarrow W$ is a linear transformation then

- T(0) = 0.
- T(-u) = -T(u).
- **3** T(u-v) = T(u) T(v).

Select from the following functions which is a linear transformation

$$T_{1} : \mathbb{R}^{3} \to \mathbb{R}^{2}, \quad T_{1}(x,y,z) = (x+y+z,x-z+y)$$

$$T_{2} : \mathbb{R}^{3} \to \mathbb{R}^{2}, \quad T_{2}(x,y,z) = (xy,z)$$

$$T_{3} : \mathbb{R}^{3} \to \mathbb{R}^{2}, \quad T_{3}(x,y,z) = (x+y-3z,z+y-1)$$

$$T_{4} : \mathbb{R}^{3} \to \mathbb{R}^{3}, \quad T_{4}(x,y,z) = (x+y,z+y,x^{2})$$

$$T_{5} : \mathbb{R}^{3} \to \mathbb{R}^{3}, \quad T_{5}(x,y,z) = (x+y,z+y,0)$$

$$T_{6} : \mathbb{R}^{3} \to \mathbb{R}^{3}, \quad T_{6}(x,y,z) = (-x+2z,y+2z,2x+2y)$$

$$T_{7} : \mathbb{R}^{3} \to \mathbb{R}, \quad T_{7}(x,y,z) = x+y-z.$$

```
T_1 is a linear transformation .
```

 T_2 is not a linear transformation

 T_3 is not a linear transformation because $T(0) \neq 0$.

 T_4 is not a linear transformation

 T_5 is a linear transformation .

 T_6 is a linear transformation .

 T_7 is a linear transformation .

Let the vector space $V = \mathscr{M}_n(\mathbb{R})$. We define the function $T: V \longrightarrow$

 \mathbb{R} as follows: $T(A) = \det A$.

The function T is not linear because $det(A + B) \neq detA + detB$.

If $T:V\longrightarrow W$ is a mapping, then T is a linear transformation if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$
 $\forall u, v \in V, \ \alpha, \beta \in \mathbb{R}.$

Remarks

- If $T: V \longrightarrow W$ is a linear transformation, then $T(\alpha_1 u_1 + \ldots + \alpha_n u_n) = \alpha_1 T(u_1) + \ldots + \alpha_n T(u_n)$.
- ② If $T \colon V \longrightarrow W$ is a linear transformation and $S = \{u_1, \dots u_n\}$ is a basis of the vector space V. The linear transformation is well defined if $T(u_1), \dots, T(u_n)$ are defined.
- **3** The unique linear transformations $T: \mathbb{R} \longrightarrow \mathbb{R}$ are T(x) = ax, $a \in \mathbb{R}$.
- **1** The unique linear transformations $T: \mathbb{R}^2 \longrightarrow \mathbb{R}$ are T(x,y) = ax + by, $a,b \in \mathbb{R}$.

If $A \in \mathcal{M}_{m,n}(\mathbb{R})$, then the mapping $T_A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ defined by: $T_A(X) = AX$ for all $X \in \mathbb{R}^n$ is a linear transformation and called the linear transformation associated to the matrix A.

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation and let $B = (e_1, \ldots, e_n)$ be a basis of the vector space \mathbb{R}^n and $C = (u_1, \ldots, u_m)$ a basis of the vector space \mathbb{R}^m . Then $T = T_A$, where $A = [a_{i,j}] \in \mathscr{M}_{m,n}(\mathbb{R})$ and its columns are in order $[T(e_1)]_C, \ldots, [T(e_n)]_C$.

The matrix A is called the matrix of the linear transformation T with respect to the basis B and C.

Let V, W be two vector spaces and $S = \{v_1, \dots, v_n\}$ a basis of the vector space V and $\{w_1, \dots, w_n\}$ a set of vectors in the vector space W.

There is a unique linear transformation $T: V \longrightarrow W$ such that $T(v_i) = w_i$ for all $1 \le j \le n$.

Definition

Let $T\colon V\longrightarrow W$ be a linear transformation . The set $\{v\in V;\ T(v)=0\}$ is called the kernel of the linear transformation T and denoted by: $\ker(T)$. The set $\{T(v);\ v\in V\}$ is called the image of the linear transformation T denoted by: $\operatorname{Im}(T)$.

Theorem

If $T: V \longrightarrow W$ is a linear transformation, then $\ker(T)$ is a vector sub-space of V and $\operatorname{Im}(T)$ is a vector sub-space of W.

Definition

If $T\colon V\longrightarrow W$ is a linear transformation then dimension the vector space $\ker(T)$ is called the nullity of the linear transformation T and denoted by: $(\operatorname{nullity}(T))$. The dimension of the vector space $\operatorname{Im}(T)$ is called the rank of the linear transformation T and denoted by: $(\operatorname{rank}(T))$.

If $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $T_A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$ the linear transformation defined by: $T_A(X) = AX$, then $\operatorname{rank}(T) = \operatorname{rank} A$, and $\operatorname{Im}(T) = \operatorname{col} A$.

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by the following:

$$T(x,y,z) = (2x - y + 3z, x - 2y + z).$$

$$(x,y,z) \in \ker(T) \iff \begin{cases} 2x - y + 3z = 0 \\ x - 2y + z = 0 \end{cases}$$

The extended matrix of this linear system is: $\begin{vmatrix} 2 & -1 & 3 & 0 \\ 1 & -2 & 1 & 0 \end{vmatrix}$.

Then

$$(x, y, z) \in \ker(T) \iff x = 5y, z = -3y.$$

 $\ker(T) = \langle (5, 1, -3) \rangle.$

$$T(x, y, z) = x(2, 1) + y(-1, -2) + z(3, 1).$$

Then

$$\operatorname{Im}(T) = \langle (2,1), (-1,-2), (3,1) \rangle = \langle (2,1), (-1,-2) \rangle.$$

If $T: V \longrightarrow W$ is a linear transformation and $\{v_1, \ldots v_n\}$ is a basis of the vector space V, then the set $\{T(v_1), \ldots T(v_n)\}$ generates the vector space $\operatorname{Im}(T)$.

The Dimension Theorem of the Linear Transformations

If $T: V \longrightarrow W$ is a linear transformation and if $\dim V = n$, then

$$\operatorname{nullity}(T) + (\operatorname{rank}(T) = n.$$

i.e.

$$\dim \ker(T) + \dim \operatorname{Im}(T) = n.$$

Definition

If $T: V \longrightarrow W$ is a linear transformation,

1 We say that T is injective if for all $u, v \in V$,

$$T(u) = T(v) \Rightarrow u = v.$$

2 We say that T is surjective if Im(T) = W.

Theorem

If $T: V \longrightarrow W$ is a linear transformation. The linear transformation T is injective if and only if $\ker(T) = \{0\}$.

Definition of Linear Transformation Kernel and Image of a Linears Transformations Matrix of Linear Transformation and the Change of Basis

Corollary

If $T:V\longrightarrow W$ is a linear transformation and dim $V=\dim W=n$. Then the linear transformation T is injective if and only if T is surjective.

Give a basis of the image of and of the kernel of the following linear transformation $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ defined by following:

$$T(x, y, z, t) = (x - y, 2z + 3t, y + 4z + 3t, x + 6z + 6t).$$

$$(x, y, z, t) \in \operatorname{Ker}(T) \iff x = y = 3t = -2z.$$

Then (6,6,-3,2) is a basis the kernel of the linear transformation. The image of the linear transformation T is spanned by columns of the following matrix

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 1 & 4 & 3 \\ 1 & 0 & 6 & 6 \end{pmatrix}$$

and the matrix

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is a row reduced form of this matrix. Then

$$\{(1,0,0,1),(-1,0,1,0),(0,2,4,6)\}$$

is a basis of the image of the linear transformation.

Let V, W be two vector spaces and $T: V \longrightarrow W$ a linear transformation.

If the linear transformation injective and $S = \{u_1, \ldots, u_n\}$ is a set of linearly independent vectors, then the set $\{T(u_1), \ldots, T(u_n)\}$ is a set of linearly independent vectors.

$$a_1T(u_1)+\ldots+a_nT(u_n)=0 \iff T(a_1u_1+\ldots+a_nu_n)=0$$

 $\iff a_1u_1+\ldots+a_nu_n=0$

since T is injective and since the set S is linearly independent, then $a_1 = \ldots = a_n = 0$.

Let $T\colon V\longrightarrow W$ be a linear transformation and let $B=(u_1,\ldots,u_n)$ be a basis of the vector space V and $C=(v_1,\ldots,v_m)$ basis of the vector space W. Then there is a unique matrix $[T]_B^C$ such that its columns $[T(u_1)]_C,\ldots,[T(u_n)]_C$. The matrix $[T]_B^C$ is called the matrix of the linear transformation T with respect to the basis B and the basis C. and satisfies

$$[T(v)]_C = [T]_B^C [v]_B; \quad \forall v \in V.$$

If V = W and B = C we write the matrix $[T]_C$ instead of $[T]_B^C$.

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by the following:

$$T(x, y, z) = (2x - y + 3z, x - 2y + z).$$

The matrix of the linear transformation T with respect to the stan-

dard basis of the vector space
$$\mathbb{R}^3$$
 is: $\begin{pmatrix} 2 & -1 & 3 \\ 1 & -2 & 1 \end{pmatrix}$

Find the matrix of the linear transformation with respect to the standard basis of the vector space \mathbb{R}^3 and find $T_i(x, y, z)$ if

- $T_1((1,0,0)) = (1,1,1), \ T_1((0,1,0)) = (1,2,2),$ $T_1((0,0,1)) = (1,2,3)$
- 2 $T_2((1,0,0)) = (1,-1,1), T_2((0,1,0)) = (-1,1,1), T_2((0,0,1)) = (-1,-1,1)$
- $T_3((1,0,0)) = (1,1,1), \ T_3((0,1,0)) = (1,2,1),$ $T_3((0,0,1)) = (2,-2,1).$

$$\begin{array}{l}
\bullet \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, \\
T_1(x, y, z) &= (x + y + z, x + 2y + 2z, x + 2y + 3z). \\
\bullet \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}, \\
T_2(x, y, z) &= (x - y - z, -x + y - z, x + y + z). \\
\bullet \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & -2 \\ 1 & 1 & 1 \end{pmatrix}, \\
T_3(x, y, z) &= (x + y + 2z, x + 2y - 2z, x + y + z).
\end{array}$$

If $T:V\longrightarrow V$ is a linear transformation and B and C are basis of the vector space V, then

$$[T]_B = {}_BP_C[T]_C {}_CP_B.$$

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear transformation such that its matrix with respect to the standard basis C of the vector space \mathbb{R}^3 is

$$[T]_C = \begin{pmatrix} -3 & 2 & 2 \\ -5 & 4 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$

Find the matrix of the linear transformation $[T]_B$ with respect to the following basis B

$$B = \{u = (1,1,1), v = (1,1,0), w = (0,1,-1)\}.$$

The matrix of the linear transformation with respect to the basis B and C is

$$_{C}P_{B} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

Then the matrix of the linear transformation with respect to the basis S and the basis B is

$$_{B}P_{C} = {}_{S}P_{B}^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

and

$$[T]_B = {}_B P_C [T]_{CC} P_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Mongi BLEL Linear Transformations

Let the linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined by the following:

$$T(x, y, z) = (3x + 2y, 3y + 2z, 9x - 4z).$$

- Give the matrix of the linear transformation T.
- 2 Give the kernel of and image of the linear transformation T.
- **3** Find the matrix the linear transformation T with respect to the basis $S = \{(0,0,1),(0,1,1),(1,1,1)\}.$

 $oldsymbol{0}$ The matrix of the linear transformation T is

$$A = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 2 \\ 9 & 0 & -4 \end{pmatrix}$$

2 The extended matrix of the linear system AX = 0 is:

$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 9 & 0 & -4 & 0 \end{bmatrix}.$$
 This matrix is equivalent to the matrix
$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Then $\ker(T) = \{0\}$ and the image of the linear transformation T is: \mathbb{R}^3 .

3 Let
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

Mongi BLEL

Let
$$u_1 = \frac{1}{3}(1,2,2)$$
, $u_2 = \frac{1}{3}(2,1,-2)$, $u_3 = \frac{1}{3}(2,-2,1)$.

- Prove that $\{u_1, u_2, u_3\}$ is an orthonormal basis of the vector space \mathbb{R}^3 .
- ② We define the linear transformation $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ by the following:
 - $T(e_1) = u_1$, $T(e_2) = u_2$ and $T(e_3) = u_3$, where $\{e_1, e_2, e_3\}$ the standard basis of the vector space \mathbb{R}^3 .
 - Find P the matrix of the linear transformation T with respect to the basis $\{e_1, e_2, e_3\}$ and find T(x, y, z).
- **③** We define the linear transformation $S: \mathbb{R}^3 \mapsto \mathbb{R}^3$ by the following:

$$S(x, y, z) = (-x + 2z, y + 2z, 2x + 2y).$$

Prove that S is a linear transformation and find its matrix A with respect to the basis $\{e_1, e_2, e_3\}$.

Find the matrix S with respect to the basis { 11, 112, 112} and Linear Transformations

As the determinant

$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = -27$$

then $\{u_1,u_2,u_3\}$ is a basis and as $\|u_1\|=\|u_2\|=\|u_3\|=1$ and $\langle u_1,u_2\rangle=\langle u_1,u_3\rangle=\langle u_2,u_3\rangle=0$, then $\{u_1,u_2,u_3\}$ is an orthonormal basis of the vector space \mathbb{R}^3 .

2

$$P = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$

and

Let the matrix
$$A = \begin{pmatrix} 2 & -2 & 3 \\ -2 & 2 & 3 \\ 3 & 3 & -3 \end{pmatrix}$$
. We define the linear trans-

formation $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ defined by the matrix A with respect to the standard basis (e_1, e_2, e_3) of the vector space \mathbb{R}^3 .

- Find T(x, y, z).
- ② Find an orthogonal basis (u_1, u_2, u_3) of the vector space \mathbb{R}^3 such that $T(u_1) = 3u_1$ and $T(u_2) = 4u_2$.
- **3** Find the matrix of the linear transformation T with respect to the basis (u_1, u_2, u_3) .
- We define the linear transformation $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ by the following: $S(e_1) = u_1$, $S(e_2) = u_2$ and $S(e_3) = u_3$. Find the matrix P of the linear transformation S with respect to standard basis.

Mongi BLEL

- Prove that the matrix P has an inverse and find P^{-1} .
- 2 Let the linear transformation U defined by the matrix P^{-1} with respect to the standard basis. Find $U(u_k)$ for all k=1,2,3.
- ① Let $F = U \circ T \circ S$. Find $F(e_1)$, $F(e_2)$, $F(e_3)$. Find the matrix of the linear transformation F and conclude the value A^n for all $n \in \mathbb{N}$.

0

$$T(x, y, z) = (2x - 2y + 3z, -2x + 2y + 3z, 3x + 3y - 3z).$$

2 Let u = (x, y, z).

$$T(u) = 3u \iff \begin{cases} -x - 2y + 3z = 0 \\ -2x - y + 3z \iff x = y = z. \\ 3x + 3y - 6z = 0 \end{cases}$$

We take $u_1 = (1, 1, 1)$.

$$T(u) = 4u \iff \begin{cases} -2x - 2y + 3z = 0 \\ -2x - 2y + 3z \\ 3x + 3y - 7z = 0 \end{cases} \iff \begin{cases} x = -y \\ z = 0 \end{cases}.$$

Mongi BLEL Linear Transformations

1 the matrix P has an inverse, then (u_1, u_2, u_3) is a basis .

$$P^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 2 & 2 \\ 3 & -3 & 0 \\ 1 & 1 & -2 \end{pmatrix}.$$

- ② $U(u_1) = (1,0,0), \ U(u_2) = (0,1,0), \ U(u_3) = (0,0,1).$

$$F(e_1) = U \circ T(u_1) = 3U(u_1) = 3(1,0,0),$$

 $F(e_2) = U \circ T(u_2) = 4U(u_2) = 4(0,1,0),$
 $F(e_3) = U \circ T(u_3) = -6U(u_3) = -6(0,0,1).$

The matrix of the linear transformation F is

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -6 \end{pmatrix}.$$

$$A^n = PD^nP^{-1}.$$