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Inner Product

Definition

Let V be a vector space on R.
We say that a function ⟨ , ⟩ : V × V −→ R is an inner product on
V if it satisfies the following:
For all u, v ,w ∈ V , α ∈ R.

1 ⟨u, v⟩ = ⟨v , u⟩
2 ⟨u + v ,w⟩ = ⟨u,w⟩+ ⟨v ,w⟩
3 ⟨αu, v⟩ = α⟨u, v⟩
4 ⟨u, u⟩ ≥ 0

5 ⟨u, u⟩ = 0 ⇐⇒ u = 0
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Examples

1 The Euclidean inner product on Rn defined by:

⟨u, v⟩ =
n∑

j=1

xjyj = x1y1 + . . .+ xnyn,

where u, v ∈ Rn, u = (x1, . . . , xn) and v = (y1, . . . , yn).

2 If E = C([0, 1]) the vector space of continuous functions on
[0, 1]. For all f , g ∈ E , we define the inner product of f and g
by:

⟨f , g⟩ =
∫ 1

0
f (t)g(t)t..
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Remarks

If (E , ⟨ , ⟩) is an inner product space and u, v ,w , x ∈ E ,
a, b, c, d ∈ R, we have:

⟨u + v ,w + x⟩ = ⟨u,w⟩+ ⟨u, x⟩+ ⟨v ,w⟩+ ⟨v , x⟩.

⟨au + bv , cw + dx⟩ = ac⟨u,w⟩+ ad⟨u, x⟩
+bc⟨v ,w⟩+ bd⟨v , x⟩.
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Example

Let u = (x , y) and v = (a, b), we define

⟨u, v⟩ = 2ax + by − bx − ay

⟨ , ⟩ is an inner product on R2.
It is enough to prove that ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 ⇐⇒ u = 0.

⟨u, u⟩ = 2x2 + y2 − 2xy = (x − y)2 + x2 ≥ 0

and ⟨u, u⟩ = 0 ⇐⇒ u = 0.
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Example

Let u = (x , y , z) and v = (a, b, c), we define

⟨u, v⟩ = 2ax + by + 3cz − bx − ay + cy + bz

⟨ , ⟩ is an inner product on R3.
It is enough to prove that ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 ⇐⇒ u = 0.

⟨u, u⟩ = (y + z − x)2 − (z − x)2 + 2x2 + 3z2

= (y + z − x)2 + (x + z)2 + z2 ≥ 0

⟨u, u⟩ = 0 ⇐⇒ z = x = y = 0 ⇐⇒ u = 0.
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Example

Let u = (x , y , z) and v = (a, b, c), we define

⟨u, v⟩ = 2ax + by + cz − bx − ay + cy + bz

⟨ , ⟩ is not an inner product on R3.

⟨u, u⟩ = (y + z − x)2 − (z − x)2 + 2x2 + z2

= (y + z − x)2 + x2 + 2xz

= (y + z − x)2 + (x + z)2 − z2.
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Example

If A = (aj ,k) ∈ Mn(R), we define the trace of the matrix A by:

tr(A) =
n∑

j=1

aj ,j

and
⟨A,B⟩ = tr(ABT )

for all A,B ∈ Mn(R).
⟨A,B⟩ is an inner product on the vector space Mn(R).
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Exercise

If u = (x1, x2, x3), v = (y1, y2, y3), we define the following
functions: f , g , h, k : R2 × R3 −→ R.

1 f (u, v) = x1y1 + x2y2 + 2x3y3 + x2y1 + 2x1y2 + x2y3 + y2x3.

2 g(u, v) = x1y2 + x2y1 + x2y3 + x3y2 + 3x1y3 + 3x3y1.

3 h(u, v) =
x1y1 + x2y2 + x3y3 + x2y1 + x1y2 + x2y3 + y2x3 + x3y1 + x1y3.

4 k(u, v) = x1y1 + x2y2 + x3y3 − x2y3 − x3y2 + x1y3 + y1x3.
Select from which the functions f , g , h, k is an inner product
on R3.
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Solution

1 f (u, v)− f (v , u) = x1y2 − x2y1. Then f is not an inner
product on R3.

2 g(u, u) = 2x1x2+2x2x3+6x1x3 = 2(x1+x3)(x2+3x3)−6x23 =
(x1 + x2 + 4x3)

2 − (x1 − x2 − 2x3)
2 − 6x23 . .

Then g is not an inner product on R3.

3

h(u, u) = x21 + x22 + x23 + 2x1x2 + 2x2x3 + 2x1x3

= (x1 + x2 + x3)
2

Then h is not an inner product on R3 because

h(u, u) = 0 ̸⇒ u = 0.

4
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k(u, u) = x21 + x22 + x23 − 2x2x3 + 2x1x3

= (x1 + x3)
2 + x22 − 2x2x3

= (x1 + x3)
2 + (x2 − x3)

2 − x23

Then k is not an inner product on R3 because

k(u, u) = 0 ̸⇒ u = 0.

Mongi BLEL Inner Product Spaces and Orthogonality



Inner Product
The orthogonality

The Orthonormal Basis

Example

Find the values of a, b such that

⟨(x1, x2), (y1, y2)⟩ = x1y1 + x2y2 + ax1y2 + bx2y1

is an inner product on R2.
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Solution

⟨(x1, x2), (y1, y2)⟩ = ⟨(y1, y2), (x1, x2)⟩ if a = b.

⟨(x1, x2), (x1, x2)⟩ = x21 + x22 + 2ax1x2

= (x1 + ax2)
2 + x22 (1− a2).

Then ⟨ , ⟩ is an inner product on R2 if and only if |a| < 1.
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Definition

Let (E , ⟨ , ⟩) be an inner product space.

1 If u ∈ E , we define the norm of the vector u by:

∥u∥ =
√
⟨u, u⟩.

2 If u, v ∈ E , we define distance between u and v by:

d(u, v) = ∥u − v∥.

3 We define the angle 0 ≤ θ ≤ π between the vectors u, v ∈ E
by:

cos θ =
⟨u, v⟩

∥u∥.∥v∥
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Let the inner product space M2(R), ⟨ , ⟩) defined by:

⟨A,B⟩ = tr(ABT ).

Find cos θ If θ is the angle between the matrices

A =

(
1 −1
2 3

)
and B =

(
2 1
1 1

)
.

ABT =

(
1 0
7 5

)
, ∥A∥2 = 15, ∥B∥2 = 7.

Then

cos θ =
2
√
3√

35
.

Mongi BLEL Inner Product Spaces and Orthogonality



Inner Product
The orthogonality

The Orthonormal Basis

Theorem (Cauchy-Schwarz Inequality)

If (E , ⟨ , ⟩) is an inner product space and u, v ∈ E ,
then

|⟨u, v⟩| ≤ ∥u∥∥v∥. (1)

We have the equality in (1) if the vectors u, v are linearly
dependent.
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Proof

Let Q(t) be the polynomial

Q(t) = ∥u + tv∥2 = ∥u∥2 + 2t⟨u, v⟩+ t2∥v∥2.

Since Q(t) ≥ 0 for all t ∈ R, then the discriminant of Q(t) is non
positive. Then

⟨u, v⟩2 ≤ ∥u∥2∥v∥2.

If |⟨u, v⟩| = ∥u∥∥v∥, this mean that the discriminant of Q(t) is
zero. Then the equation Q(t) = 0 has a solution. This means that
the vectors u, v are linearly dependent.
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Theorem

If (E , ⟨ , ⟩) is an inner product space and u, v ∈ E , then

∥u + v∥ ≤ ∥u∥+ ∥v∥.

Proof

∥u + v∥2 = ∥u∥2 + ∥v∥2 + 2⟨u, v⟩
≤ ∥u∥2 + ∥v∥2 + 2∥u∥ ∥v∥ = (∥u∥+ ∥v∥)2.
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Definition

If (E , ⟨ , ⟩) is an inner product space. We say that the vectors
u, v ∈ E are orthogonal and we denote u ⊥ v if ⟨u, v⟩ = 0.

Theorem (Pythagor’s Theorem)

If u ⊥ v if and only if

∥u + v∥2 = ∥u∥2 + ∥v∥2.

Proof
∥u + v∥2 = ∥u∥2 + ∥v∥2 + 2⟨u, v⟩ = ∥u∥2 + ∥v∥2.
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Definition

If (E , ⟨ , ⟩) is an inner product space. We say that set
S = {e1, . . . , en} of non zeros vectors is orthogonal if

⟨ej , ek⟩ = 0, ∀1 ≤ j ̸= k ≤ n.

and we say that S is normal if

∥ej∥ = 1, ∀1 ≤ j ≤ n.

and we say that it is orthonormal if

⟨ej , ek⟩ = δj ,k , ∀1 ≤ j , k ≤ n.

(δj ,k = 0 If j ̸= k and δj ,j = 1.)
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Theorem

Any set of non zero orthogonal vectors is linearly independent .

Theorem

If (E , ⟨ , ⟩) is an inner product space and if S = {e1, . . . , en} is an
orthonormal basis of E , then for all u ∈ E

u = ⟨u, e1⟩e1 + . . .+ ⟨u, en⟩en.

Proof

If u =
n∑

j=1

ajej , then ⟨u, ek⟩ =
∑n

j=1 aj⟨ej , ek⟩ = ak .
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Theorem

(Gramm-Schmidt Algorithm) If (E , ⟨ , ⟩) is an inner product space
and (v1, . . . , vn) a set of linearly independent vectors in E , there is
a unique orthonormal set (e1, . . . , en) such that

1 for all k ∈ {1, . . . , n},

Vect(e1, . . . , ek) = Vect(v1, . . . , vk),

2 for all k ∈ {1, . . . , n},

⟨ek , vk⟩ > 0.
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Proof
We construct in the first time an orthogonal set (u1, . . . , un) such
that: 

u1 = v1

u2 = v2 −
⟨u1, v2⟩
∥u1∥2

u1

...

un = vn −
n−1∑
i=1

⟨ui , vn⟩
∥ui∥2

ui .

We construct the set (e1, . . . , en) from (u1, . . . , un) as follows:

ek =
uk
∥uk∥

, k ∈ {1, . . . , n}.
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Example

Let F be the vector sub-space of R4 spanned by the vectors
S = {u = (1, 1, 0, 0), v = (1, 0,−1, 0), w = (0, 0, 1, 1)}.

1 Prove that S is a basis of the sub-space F .

2 In use of Gramm-Schmidt Algorithm, find an orthonormal
basis of F . (with respect to the Euclidean inner product).
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Solution

1 Let A =


1 1 0
1 0 0
0 −1 1
0 0 1

 with columns the vectors u, v ,w .

The matrix A =


1 1 0
0 1 0
0 0 1
0 0 0

 is a row reduced form of the

matrix A. This proves that S is a basis of the sub-space F .

2 u1 =
1√
2
(1, 1, 0, 0), u2 =

1√
6
(1,−1,−2, 0),

u3 =
1√
12
(1,−1, 1, 3).

{u1, u2, u3} is an orthonormal basis of the sub-space F .
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Exercise

1 Prove that ⟨(a, b), (x , y)⟩ = ax + ay + bx + 2by is an inner
product in R2.

2 Use Gramm-Schmidt algorithm to construct an orthonormal
basis of R2 from the basis {u1 = (1,−1), u2 = (1, 2)}.
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Solution

1 • ⟨(a, b) + (c , d), (x , y)⟩ = (a+ c)x + (a+ c)y + (b+ d)x +
2(b + d)y = ⟨(a, b), (x , y)⟩+ ⟨(c , d), (x , y)⟩

• ⟨(a, b), (x , y)⟩ = ax + ay + bx + 2by = ⟨(x , y), (a, b)⟩
• ⟨λ(a, b), (x , y)⟩ = λax + λay + λbx + 2λby =

λ⟨(a, b), (x , y)⟩
• ⟨(a, b), (a, b)⟩ = a2 + 2ab + 2b2 = (a+ b)2 + b2 ≥ 0

• ⟨(a, b), (a, b)⟩ = 0 ⇐⇒ a+ b = 0 = b ⇐⇒ a = b = 0

2 The vector u1 is unitary and the second vector is v2 = (1, 0).
Then {v1 = (1,−1), v2 = (1, 0)} is an orthonormal basis.
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Example

Let S = {u1, u2, u3, u4} is a basis of the space M2(R) such that

u1 =

(
1 −1
0 1

)
, u2 =

(
1 0
1 1

)
, u3 =

(
1 0
0 2

)
, u4 =

(
0 1
1 1

)
We use the Gramm-Schmidt algorithm to construct an
orthonormal basis from the basis S .

v1 =
1√
3

(
1 −1
0 1

)
.

⟨u2, v1⟩ =
2√
3
,

u2 − ⟨u2, v1⟩v1 =
1

3

(
1 2
3 1

)
.

v2 =
1√
15

(
1 2
3 1

)
.
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⟨u3, v1⟩ =
√
3, ⟨u3, v2⟩ =

3√
15

u3 − ⟨u3, v1⟩v1 − ⟨u3, v2⟩v2 =
1

5

(
−1 3
−3 4

)
.

v3 =
1√
35

(
−1 3
−3 4

)
.

⟨u4, v1⟩ = 0, ⟨u4, v2⟩ =
6√
15

, ⟨u4, v3⟩ =
4√
35

u4 − ⟨u4, v1⟩v1 − ⟨u4, v2⟩v2 − ⟨u4, v3⟩v3 =
1

35

(
−10 −39
−29 −29

)
.

v4 =
1√
7

(
2 1
−1 −1

)
.

Mongi BLEL Inner Product Spaces and Orthogonality



Inner Product
The orthogonality

The Orthonormal Basis

Exercise

Let F be the vector sub-space of the Euclidean space R4 spanned
by the following vectors
u1 = (1, 2, 0, 2), u2 = (−1, 1, 1, 1).

1 Use Gramm-Schmidt algorithm to construct an orthonormal
basis of the vector sub-space F

2 Prove that the set F⊥ = {u ∈ R4 : ⟨u, v⟩ = 0, ∀v ∈ F} is a
vector sub-space of R4.

3 Find an orthonormal basis of the vector sub-space F⊥.
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Solution

1 v1 =
1

3
u1, ⟨u2, v1⟩ = 1,

u2 − ⟨u2, v1⟩v1 = (0, 3, 1,−1)− 1
3(−1, 1, 1, 1) = 1

3(−4, 1, 3, 1).
Then v2 =

1
3
√
3
(−4, 1, 3, 1).

(v1, v2) is an orthonormal basis of the vector sub-space F .

2 If v1, v2 ∈ F⊥, α, β ∈ R and u ∈ F , then

⟨αv1 + βv2, u⟩ = α⟨v1, u⟩+ β⟨v2, u⟩ = 0.

Then F⊥ is a vector sub-space of R4.

3 Let u = (x , y , z , t) ∈ R4.

u ∈ F⊥ ⇐⇒
{
⟨u, u1⟩ = 0
⟨u, u2⟩ = 0

⇐⇒
{

x + 2y + 2t = 0
−x + y + z + t = 0
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{
x + 2y + 2t = 0

−x + y + z + t = 0
⇐⇒

{
x = 2

3z
y = − z

3 − t

Then u ∈ F⊥ ⇐⇒ u = − z
3(−2, 1,−3, 0) + t(0,−1, 0, 1).

The vectors e1 = (−2, 1,−3, 0), e2 = (0,−1, 0, 1) is an orthogonal
basis of the vector sub-space F⊥.
w1 =

1√
14
e1, ⟨w1, e2⟩ = − 1√

14
,

e2 − ⟨e2,w1⟩w1 =
1
14(2, 13, 3, 14).

Then ( 1√
14
(−2, 1,−3, 0), 1

3
√
42
(2, 13, 3, 14)) is an orthonormal basis

of the vector sub-space F⊥.
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Consider the following inner product on R3

⟨(x , y , z), (x ′, y ′, z ′)⟩ = 2xx ′ + 4yy ′ + zz ′ + 2xy ′ + 2yx ′.

1 Use Gram-Schmidt process on the standard basis
C = {u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1)} to get an
orthogonal basis B = {v1, v2, v2} of R3.

2 Let u = (1, 2, 3) be a vector in R3. Compute [u]B the
coordinates of u with respect to the basis B.
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1 The basis { 1√
2
u1,

1√
2
(u2 − u1), u3} is an orthonormal basis of

R3

2 Let u = (1, 2, 3) be a vector in R3.

[u]B =

⟨u, v1⟩
⟨u, v2⟩
⟨u, v3⟩

 =


6√
2
4√
2

3

.

Mongi BLEL Inner Product Spaces and Orthogonality


	Inner Product
	 The orthogonality
	The Orthonormal Basis

