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Cycles in open sets

Definition

Let v1,...,7vn be closed piecewise continuously differentiable paths
in an open subset Q2 of C. Let =~1 + ...+ v, be the formal sum
of these closed paths defined by

n

/ f(z) dz="> / f(z) dz,

r j=17%

for all continuous function f on Q. T will be called a cycle.
By definition the index of the cycle I' at a point

z ¢ |7y (support ;) is

Ind(T, 2) ZInd (vj> 2)-
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Cycles in open sets

The main theorem in this chapter is the following:

Let f € H(QQ) and T a cycle such that Ind(I',z) =0,V z & Q then
o

A (T ) = .1/'[(‘”) G, W ze @) Sl
r

17T w—Z

(2] /rf(w) dw = 0.

© IfT1 and 'y are two cycles in 2 such that
Ind(l1,z) =Ind(l2, z); V z & Q, then
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Cycles in open sets

Proof
2) and 3) are deduced from 1), indeed to prove 2) with the
condition Ind(l",z) =0, V z € C\ , we consider the function F

defined on Q by

Jw=2)f(w) if w#2z
F(W)—{ F(z) =0 '

L f(w) dw = . Flw) dw = F(z)Ind(l', z) = 0.

2ir Jr S 2im Jrw—z

To prove 3) it suffices to consider the cycle ' =T1 — I',.
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Cycles in open sets

To prove

F(z)Ind(T, 7) = - /r W) (1)

2im w—z

for z € Q \ Suppl, it suffices to prove

/f(W)dW—/f(z)dW—O.
rw—z rw—z
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Cycles in open sets

For the proof of the theorem 1.2, we need the following lemma:

Let f: Q — C be a holomorphic function and g: Q — C the
function defined by

fl(z) if z=w
§(z,w) =3 fw)-fl2) ctw

g is continuous and whenever w € Q, the mapping z — g(z, w)
is holomorphic.
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Cycles in open sets

Proof of lemma 1.3

The function g is continuous on Q\ {(a, a); a € C}. For

(a,a) € Q, there exists R > 0 such that D(a, R) C Q. Let r < R,
w,z € D(a, r) and the path v defined by ~(t) = tw + (1 — t)z for
tel[0,1]. If w#z.

1 1
[ roma = 2 [ rampo d
0 0

w—Zz

1 1 ,
_ W_Z/O(foy)(t) dt
f(w) — f(2)

= Tz &
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Cycles in open sets

1
Thus g(w, 7) — g(a,3) = / (F(7(£)) — F(a)) dt. Since ' is
0
continuous, g is continuous at (a, a).
We Recall the Fubini's theorem.

Theorem (The Fubini’s Theorem)

Let g: [a, b] x [c,d] — C be a continuous function, then

/ab (/Cdg(t,s) ds> dt:/cd (/abg(t,s) dt> ds.
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Cycles in open sets

Proof of theorem 1.2 )
The function h: Q@ — C defined by h(z) = 5 /g(w,z) dw is
™ Jr

continuous on Q. Indeed, let (z,), be a convergent sequence in

to z € Q. The function g is uniformly continuous on any compact.

We take K1 = Suppl and K5 a closed disc centered at z. We

deduce that lim g(w,z,) = g(w, z) uniformly with respect to
n——+00

w € Ki. The result follows. (We can use the dominated
convergence theorem since for any compact K of €2, g is bounded
on Supp(l) x K.)
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Cycles in open sets

To prove that h is holomorphic on 2, we use Morera's theorem and
Fubini theorem.
Let A be a triangle in €.

/6Ah(2) dz = /aA <2:il7r/rg(w,z) dW> dz

thus h is holomorphic.
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Cycles in open sets

We prove now that h = 0 on . For this we construct an entire
function H, equal to hon Q and lim H(z)=0.

|z|]—+o0
Let V = {z € C\ Suppl; Ind(l',z) = 0}. V is a non empty open
subset, Q¢ C V. Let h; be the function defined on V by

ha(z) = 1 f(w)

C2im Jrw—z

dw.

The functions h and h; coincide on Q NV, hy is holomorphic on
V. We define the function H on QU V by
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Cycles in open sets

[ h(z) if zeQ
H(z) = {hl(z) if zeV’
H is holomorphic on Q U V = C because Q¢ C V.
We shall prove that lim H(z) =0.
|z|]—+o0

Since I is a cycle, then for |z| large enough, Ind I,z)=0. Thus
the function H is defined by H(z) = — )

A7 Jrw—2z
f 1
/(W) dW’ < sup |F(w)[L(T) — 0, with L(T)
rw-—=z ‘Z’ - wéeSuppl |z| =400

the length of T.

O
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Cycles in open sets

Remark 1 :
Let f be a holomorphic function on D(0, R) and f(z Zanz

the expansion on power series of f. For all 0 < r < R, we denote
7, the closed curve defined by 7,(t) = re't, for t € [0, 27]. For
0<n<n<R,letl =7, — v, bethe cycle and the function

f
g(z) = % defined on the punctured disc Q = D(0, R) \ {0} for
z

n € Ng. Then Ind(I",z) = 0 for all z & €, thus /g(z)dz =0. We
r

deduce that

1 [ (@) _1/ f(2)

2imr [, z"t o 2im [zt
n

Vry
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Simply Connected Domains

Definition

Let vo,7v1: [0,1] — Q be two closed curves. The curves y9 and
~1 are called homotopically equivalent in S if there exists a
continuous function H: [0, 1] x [0,1] — Q such that

H(t,0) = vo(t), H(0,s) = H(1,s) and H(t,1) = v1(t),

Vs, t € [0,1].

We say that H is an homotopy between ~y and 7.

We remark that for all s € [0, 1], the mapping ~vs(t) = H(t,s) is a
closed curve.
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Simply Connected Domains

If Q is a convex open set, all closed curve v in Q is homotopically
equivalent to a point. It suffices to take the mapping

H(t,s) = (1 —s)y(t) +s.a, a € Q. The mapping H is continuous,
H(t,0) = v(t), H(t,1) = a, H(0,s) = H(1,s) because

70(0) = 70(1).
We have the same result if €2 is starlike with respect to a point.
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Simply Connected Domains

The homotopy's relationship is an equivalence relationship.

e Reflexivity Any closed curve 7y is homotopically equivalent to
itself. It suffices to consider H(t,s) = ~(t), V s € [0,1].

e Symmetry If 79 and ~; are homotopically equivalent with
respect to the mapping H. Let F: [0,1] x [0,1] — € be the
mapping defined by F(t,s) = H(t,1—s). Then

F(t,0) = H(t,1) = y(t), F(t,1) = H(t,0) = vo(t). We deduce
that 41 and 7o are homotopically equivalent.
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Simply Connected Domains

e Transitivity If 79 and ~; are homotopically equivalent with
respect to the mapping H(t,s) and -1 and 72 are homotopically
equivalent with respect to the mapping G(t,s). The mapping
H(t,2s) 0<s<1
F = ’ -~ =2,
(t.5) {G(t,25— 1) l<s<1
the homotopy between the closed curves o and ».

F is continuous and realizes
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Simply Connected Domains

Definition

An open subset Q2 of C is called a simply connected domain if
Q  is a domain.

@ Any closed curve in S is homotopically equivalent to a point.
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Simply Connected Domains

@ Any convex open subset of C is simply connected and more
generally any starlike open subset with respect any point is
simply connected. Indeed if Q is starlike with respect to a
point a and v: [0,1] — Q a closed curve. The mapping
H(t,s) = sy(t) + (1 — s)a is a homotopy between ~ and a.

@ The punctured disc or the annulus are not simply connected.
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Simply Connected Domains

Let Ty and 'y be two closed piecewise continuously differentiable
curves homotopically equivalent in Q, then
Ind(Fp,z) =Ind(l1,2), ¥V z € Q.

BLEL Mongi Global Expression of Cauchy’s Theorem



Simply Connected Domains

Remarks 2 :

O If Q is a simply connected domain, then for all closed
piecewise continuously differentiable curve in Q,
Ind(y, z) = 0, whenever z € Q. (This remark can be taken
also as a definition of a simple connected domain).

Q If Q is simply connected domain, there is no bounded
connected components of Q°.
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Simply Connected Domains

If Q is a simply connected domain, then
a) for all holomorphic function f on Q and for any closed piecewise

continuously differentiable curve v in Q, / f(z) dz =0,
5y

b) any holomorphic function f on Q has a primitive in .

If Q is a simply connected domain and f a holomorphic on 2
without zeros, there exists a holomorphic function g on Q such
that f = e8.
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Simply Connected Domains

Proof
/ eh

f
Let h be a primitive of a then (7)’ = 0. There exists ¢ € C*

such that e" = ¢f, if Cis a logarithm of ¢ € C*, the function
g = h — C answer the theorem.
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Simply Connected Domains

For the proof of theorem 2.4 we need the following lemma:

Let vo, 71 : [0,1] — C be two closed piecewise continuously
differentiable curves in C and let zg € C such that

|71(t) — ’70(t)| < ‘Zo — ’yo(t)|, Vite [0, 1]. Then

Ind (70, 20) = Ind(71, 2o).
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Simply Connected Domains

oroot (1) (1) = (1)
_nit)— 2 en1— _olt)—m _ o
If v(t) = o(t) — 20" then 1 —~(t) 0= 2 Th

assumption on 7g and 7 yields that |1 — ~(t)| < 1, thus
Ind(7,0) = 0. (0 is in the unbounded connected component of

(C\ Suppr)). But

1 [t I E A o(t
Ind(v,0) = — 7 (t) = - fh( ) - 70( ) dt
2im Jo (1) 2ir Jo "m(t) =20 70(t) — 20
= Ind(91,0) — Ind(70,0).
Thus Ind(~,0) = Ind(y1, 2z0) — Ind(y0, 20) = 0. U
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Simply Connected Domains

Proof of theorem 2.4

Let H: [0,1] x [0,1] — € be a continuous mapping such that
H(t,0) =To(t), H(t,1) = T1(t) and H(0,s) = H(1,s) for all
s €[0,1]. Let K = H([0,1] x [0,1]) and € > O such that
d(K,Q°) > 2¢ > 0. Since H is uniformly continuous on the
compact set K, there exists p € N such that

|H(t,s) — H(t',s")| < eif |t — t]< and |s — ’|<%

For each 0 < k < p, we consider the foIIowmg closed curves
() = H(L, &) (pt +1—j) + H(SE, £)( — pt),
forj—1<pt<jandl1<j<p.
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Simply Connected Domains

k
We have |y(t) — H(t,—)| <eforall t €[0,1] and k=0,...,p
Indeed for all j — 1 < pt <,

o

mm—H(r,,ﬁ)r < rH(Z, f) H(r,ﬁ)r(pm—j)
. 1 k k
+( — t)‘H(T’;) H(t,;)] <e.

So is for |yk(t) — vk—1(t)| < e. We have then |y(t) — To(t)| < e
for all t € [0,1].
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Simply Connected Domains

[vp(t) — F1(t)] < € for all t € [0,1].
Let proving now that |yx(t) — z| > e forall 20 ¢ Q, k=0,...,p

and all ¢t € [0,1].
Ik(t) — 20| > [H(t,

)l-

—Zo| > €.

) — 20| — () — H(t,

T | x
~ TIx

~—

[H(t, %) — z0] = 2= and [yu(t) — H(t, %)] < & = (e
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Simply Connected Domains

We prove now that Ind(~k, zp) = Ind(yk—1, 20)-
Ind(v(), Zo) = Ind(ro, Zo) and Ind('yp, Z()) = Ind(rl, Zo).

We have
vk (t) = vk—1(t)] < e < |vk(t) — 20| = Ind(vk, 20) = Ind(yk—1, 20)-

0(t) — To(t)] < & < |o(t) — 20| = Ind(70, 20) = Ind(Tg, 20).
The same result for the third equality. d
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Simply Connected Domains

If v0 and 71 are two piecewise continuously differentiable curves
and homotopically equivalent in 0, then for all f € H(Q)

/7 0 f(z) dz = L 1 f(z) dz.
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Simply Connected Domains

If Q is a domain of C, the following properties are equivalent

o
2]

Q is simply connected.

Two closed curves in £ are homotopically equivalent in €.
Any holomorphic function on Q has a primitive.

If f € H(2) and v a closed piecewise continuously

differentiable curve in Q, then /f(z) dz = 0.
gl

For all z € Q€, and for any closed piecewise continuously
differentiable curve v in Q, Ind(v, z) = 0.

For any holomorphic function f on Q without zeros, there
exists a holomorphic function g on Q such that f = e8.

For any holomorphic function f on Q without zeros, there
exists a holomorphic function g on € such that g2 = f.

Q = C or Q is isomorphic to unit disc (Riemann's theorem).
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Laurent Series

Let Q be an open subset containing the annulus

{zeC; 0<n<|z—2z|<rn<+oo} and let f be a holomorphic
function on . Then for all z in the annulus

{zeC; n<|z—2z| < n},

f(z):]'/ f(w) dw—l/ f(w) dw
2im ), w—z 2ir [, w—z

with yl(t) =z + rleit and ’}/z(t) =Zy+ rzeit, t e [0, 271'].
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Laurent Series

Proof

Thecycle I =741 — 2 isin Qand if |a— z0| < < 1,
Ind(T, a) = 0.

If |a— 2| > ro > 1, Ind(T", a) = 0, then Ind(l", a) = 0 for all
a & Q. We derive from theorem 1.2 that

F(2)Ind(T, 2) = —— /r W) .

2imw w—z

Butif n <|z— z| < rp, Ind(l', z) =1, thus

ek [ 1) g L[ ),
2ir ), w—z 2ir J,, w—z '
O
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Laurent Series

Let Q be the annulus defined by

Q={zeC; 0<s <|z— 2| < s2 <+00}. For any holomorphic
function f on S, there exist a unique sequence (an)necz such that
whenever z € Q

—+00

f(z) =) an(z —2)", (2)

—00

1 f
where, a, = — & dw, for all n € 7.
2ir )., (w — z)"*1

Y, (t) = zo + reit with sy < r < sp and t € [0,27].
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Laurent Series

The series (2) is absolutely convergent on Q and uniformly
convergent on any compact subset of .

The term Z an(z — z9)" is called the singular part of f at zy on

n=——oo
the annulus.
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Laurent Series

Proof
Let r; and r» be two positive numbers such that s < < rn < s
and let z € Q such that n < |z — z| < rp. By theorem 3.1, we

have
1 f 1 f
f(z):./ (W) dW—./(W)dW
2im W=z 21w ww-—z

e Consider the first integral 1/ M dw
72

17T w—Zz
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Laurent Series

. — k 1, r
Ifze D % (zm2)" 1 g,
z € D(z0,r) and w € Az, 1), |(w —zo)k+1| S r2(r2) us

(z — . .
the series E (;?1+1 converges uniformly with respect to w,
n>0

for w € Az, r2) and with respect to z for |z — zp| < r, r < .
Since the function f is continuous, it is bounded on (fzo, and
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Laurent Series

k=0

1 f
e Consider the second integral / (w) dw.
ir J, w—z
I 1 -1 1 B
w—z (w-2)-(z2-2) (z-2)(1-%2)

-1 & w—z
(z — 20) Z(z—zs)k'

k=0
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Laurent Series

If r > nr,|z— 2| >rand |w— z| = r, then the series

W — Zz : .

Z(io)k converges uniformly on %z, r1) with respect to z
ko £

such that |z — zp| > r. The integral of the previous identity yields

~1 f(w) R 1 1 P

mn k=0
-1 f
If k= —p—1, we have —— W) g =
2im nwWw—=2z
-1
1 f(w)
Z (Z—Zo)pﬂ m Zan Z—Zo

k=—00
The series E an(z — z09)" converges unlformly on

o0
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Laurent Series

The series Z an(z — z9)" converges uniformly on
n<-1
{ze€C; |z—zy| > r > n}. Thus if we take a compact subset K
of Q, there exists r and r’ such that
Kc{zeC;, r<l|z—2z|<r}c{zeC; n<l|z—2z| < r}and
then the series Z an(z — z9)" converges uniformly on K.
neZ
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Laurent Series

e Uniqueness of the coefficients.
“+oo

Assume that f(z) = Z b,(z — z0)" and the series converges

n=—0o0
uniformly on any compact subsets of the annulus

{zG(C' 51<\z—zo|<52} Let sy < r<s;and k € Z.

Z b 20) with w = z + rel?,

(W ) k+1 B — Zo)k+1’

6 € [0, 27], then

n=—oo
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Laurent Series

1 f(w) 1 [T f(zmg+re?)
Sir /Yr (W — zg)k+1 W= ; (rei?)k df = by.

Thus the coefficients by are uniquely determined.
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Laurent Series

Remarks 3 :
Let f be a holomorphic function on the annulus
{zeC;, 0< |z— 2| < r}.

@ 2 is an isolated singularity.

400 -1
f(z) = Za,,(z—zo)"—i— Z an(z — 29)".
n=0 n=-—o0

The series Z an(z — z0)" converges for |z — zg| < r and the
n>0
series Z an(z — z9)" converges for |z — z5| > 0.
n<-—1
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Laurent Series

Remarks 4 :

@ In the case of a removable singularity (or regular point), the
singular part is zero indeed
1 f(w)

ap=— | —————
" 2ir ), (w = z)tt

dw, with0O<s<r. If n<Q,

1
lan| < = sup [f(w)] — 0, thus a, =0if n <O.
S |w—2zo|=s s—0
-1
@ If zy is a pole of order m, the singular part is Z an(z—2z0)"

n=—m

and a_p, # 0, because Ii_)m (z—20)"f(2) = o, with a € C*.
z— 2

BLEL Mongi Global Expression of Cauchy’s Theorem



Laurent Series

Definition

If zy is an isolated singularity of a holomorphic function f on
Q\{z} and if
+o0

f(z) = Z an(z — z0)" on the annulus

{zeC; 0<|z—2z| <r} CQ. The number a_; is called the
residue of f at zy and denoted by: Res(f, zp).
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Laurent Series

Remarks 5 :

@ If f is a holomorphic function on {z € C; 0 < |z — z| < r},
forO<s<r,
1
1= o /% f(w) dw = Res(f, zp).
@ (The Bessel's functions)
Let f(z) = e7(=2),

+oo
flz) =2 =3 Jp(w)z".

— )
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Laurent Series

Theorem (Residue at a simple pole)

If f has a simple pole at zy, then

Res(f, zp) = lim (z — z9)f(2).

zZ— 2\
In particular if f(z) = igi with h'(zp) # 0, h(z) = 0 and

g(z0) # 0, then Res(f, zp) = f/(é(;))
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Laurent Series

e If f is a holomorphic function and zj is a zero of order k for f,
/ /

then zg is a simple pole for the function a and Res(?,zo) = k.

Indeed f(z) = (z — 20)*g(z), with g(z0) # 0, thus
f'(z) k g'(2)

f(z) (z—2) &(2)’ o
e If zp is a pole of order k for f, then zy is a simple pole for the
/ /

f
function a and Res(—, zp) = —k.

f'
Indeed f(z) = g(z))k, with g(zo) # 0, thus
z— 79
fa) k&)

flz) (z—2) &(2)




Laurent Series

Theorem (Residue at a pole of order m)

If zy is a pole of order m for f, then

Res(f, z9) = (m i 0 ZILn;O jzr;—_l ((z = 20)"f(2)).
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The Residue Theorem

Theorem (The Residue Theorem)

Let z1,...,2z, in Q and v a cycle in Q\ {z1, ..., 2} such that
Ind(y,z) =0forallz¢ Q. If f: Q\{z1,...,2,} — Cisa
holomorphic, then

/ f(z) dz =2im ZRes(f, zj)Ind(~, z;j).

J=1
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The Residue Theorem

Proof
Let D; be a disc centered at z; and z, € D, for all k # j. Then for

all z € D;
+00
f(2)= ) anjz—z)" 2# 7

Define the function f; by:

-1

fi(z)= ) anj(z—2z)"

n=—oo

P
fi is a holomorphic on C\ {z;} and the function F = f — Zﬂ is

j=1
holomorphic on Q\ {z1,...,2,} and can be extended to a
holomorphic function on €2.
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The Residue Theorem

By Cauchy's theorem / F(z) dz=0. Then
gl

/f(z) dz = Z/ fi(z) dz = ZiWZRes(f,zj)Ind(’y,zj).

j=1
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Rouché’s Theorem

The theorem presented in this section is useful to localize the zeros
of a holomorphic function and we derive another proof of the
fundamental theorem of Algebra, (D'Alembert’s theorem).

Theorem (Rouché’s Theorem)

Let f and g be two holomorphic functions on a neighborhood of
the disc {z € C; |z — a| < r} and such that

If(z)—g(2)| < |If(2); Vz€ HAa,r)={z€C; |z—a| =r}, then
f and g have the same number of zeros inside the disc D(a, r).
(The zeros are counted according to their order of multiplicity.)
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Rouché’s Theorem

Proof
The function h = g is holomorphic outside the zeros of f and
f h/ g/ f‘/
|1— h(z)| < 1forall ze “a,r) and i Let v be the

circle centered at a and of radius r and let ['(t) = ho~(t),

(1) = 7/(2)-H (7(1)).

/ 27t it . 2w
/ H(w) dw = / Matre) (a+re-t)irelt dt:/ MO dt
. o h(a+ reit) o I(t)

w

= /dw = 2irInd(l,0) =0,
r
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Rouché’s Theorem

because 0 is in the unbounded connected component of the
complementary of the support of I'. Thus

Lofgm) 1 [fw)
2ir /., g(w) d 2i7r/7 f(w) aw.

1 /
— / g'(w) dw is the number of zeros of g inside the disc
2ir /., g(w)

f‘

1 /
D(a,r), and / (w) dw is the number of zeros of f inside
2im /., f(w)
the disc D(a, r).
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Rouché’s Theorem

Remark 6 :

The Rouché’s theorem remains valid if we replace the circle by a
closed curve such that any point inside the curve has an index
equal to 1.

Corollary (D’Alembert’s Theorem (Fundamental Theorem of

Algebra))

Let P be a polynomial of degree n > 1, then P has n zeros in C
counted according to their order of multiplicities.
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Rouché’s Theorem

Proof
If P(z) = apz" + ...+ ap, then for |z| large enough,
n
|P(z) — anz"| < |an||z"|, because lim P(z) = anz" =0. It
|z| =>+o0 anz"
results that P has the same number of zeros that the polynomial
Q(z) = apz". O
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Rouché’s Theorem

Let f be a holomorphic function on a neighborhood of the disc
{z € C; |z| <1} and such that |f(z)| < 1 for all |z| = 1. The
equation f(z) = z" has exactly n solutions inside the unit disc. In
particular f has only one fixed point zy, (f(z0) = zo).
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Rouché’s Theorem

e ———

@ We look for the number of zeros of the polynomial
z* 4+ 222 + 3 inside the disc D(0,2).
Let f(z) = z* and g(z) = z* + 222 + 3.
If(z) — g(2)| <11 < |f(2)| = 16 for |z| = 2. Thus by
Rouché'’s theorem, f and g have the same number of zeros
inside the disc D(0,2) which is equal to 4.
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Rouché’s Theorem

@ We consider the polynomial P(z) = z7 +5z* + 23 — z + 1.
The polynomial P has exactly 4 roots inside the unit disc D,
indeed the polynomial Pi(z) = 5z* has 4 roots inside the unit
disc D and |P(z) — Pi(z)| < |P1(z)| for all |z] = 1.

The polynomial P has exactly 3 roots inside the annulus

{z € C; 1< |z| <2}, indeed the polynomial Py(z) = z” has
7 roots inside the disc D(0,2) and |P(z) — P2(z)| < |P2(z)|
for all |z| = 2.
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Rouché’s Theorem

@ If 1 < a € R, the equation z 4+ e~ = a has only one solution
inside the half plane {z € C; Rez > 0}. Indeed we consider
the closed curve defined by [—iR,iR] juxtaposed with the
semicircle |z| = R > 0 inside the half plane
{z€C; Rez>0}. Set f(z) =z—aand g(z) =e % If
a > 1 then, on the y—axis, |z —a| > a> |e| = 1. On the
semicircle, |[e7?| <land|z—a| > ||z] —a| >1if R>1+a.
Thus, if R > 1+ a, we have |f(z)| > |g(2)| on the closed
curve. Then, by Rouch$’s theorem, z —a and z — a+ e % has
the same number of zeros inside the closed curve.
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Rouché’s Theorem

1
@ We consider the function f(z) =z + om defined on C*. We

claim to prove that f takes each non real number exactly m
times when z is inside the unit disc. i.e. if a = a; + ia»,

ar # 0, then the equation f(z) — a has m zeros inside the unit
disc.

If z=¢" 0 c[0,27], f(z) = ™ 4 e ™ = 2cos mh. Thus
g(z) = f(z) —a=2cos mh — a; — iap and the argument of
g(z) has a total variation 0 when 6 varies between 0 and 27
because the image of the unit circle is an interval. Thus,
AArg(g(z)) = 0= Z — P, where Z is the number of zeros of
g inside the unit disc and P is the number of poles inside.
But g has m poles inside the unit disc, then
Z—-P=Z-m=0=2Z=m.
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Local Inversion Theorem and the Open Mapping Theorem

[The open mapping Theorem]

Let f be a non constant holomorphic function on a domain € > z
and let k be the order of multiplicity of the root zy for the function
f(z) — f(z0). Then there exists an open neighborhood U of z, an
open neighborhood V = f(U) of f(zy) such that for all w # f(z)
in V, there exist k distinct points zi, ..., zx in U such that

f(zj)) =w, forall1 <j <k,
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Local Inversion Theorem and the Open Mapping Theorem

Any non constant holomorphic function on a domain § is open.

If f: Q — C is an injective holomorphic function, then f'(z) # 0
for all z € Q.
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Local Inversion Theorem and the Open Mapping Theorem

Proof of theorem 6.1

The zeros of f'(z) and f(z) — f(zp) are isolated, thus there exists
r > 0 such that D(zp,r) C Q and f'(z) # 0,

f(z) — f(z) #0, Vze€ D(z,r) \ {z0}. Let v be the circle of
center zy and radius r. We have

1 f'(2) ~ Ind(f o ) =
2i7T/J(Z)f(zo)dz_ld(f wi=z)=k  (3)
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Local Inversion Theorem and the Open Mapping Theorem

Let V be the connected component of C \ Imf o vy which contains
f(z0). V is a open subset. Let U = D(z,r) N f~(V), then U is
open because f is continuous and zp € U. Since the mapping

w — Ind(f oy, w) is constant on the connected component V' of
C \ Imf oy which contains f(zy), then by identity (3)

Ind(f oy,w) =k, V w € V. Thus f(z) — w has k solutions in
D(zp, r) for all w € V. The solutions are different because

f'(z) #0in D(zo,r) \ {20} and we have f(U) = V. O
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Local Inversion Theorem and the Open Mapping Theorem

(Local inversion Theorem)

Let f be a holomorphic function on a domain 2. Let zy € 2 and
wo = f(z9). If f'(z9) # 0, then there exist an open neighborhood
U of zg and an open neighborhood V' of wy such that f is bijective
from U into V. The inverse function f~* is holomorphic.
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Local Inversion Theorem and the Open Mapping Theorem

Proof
The existence of U, V, f~1 results by theorem 6.1, the function

f~1 is continuous because f is open. Furthermore f’ never
vanishes by Corollary 6.3. Thus f~! is holomorphic. O

Let f be an injective holomorphic function on an open subset 2,
then () is an open subset of C and f is an analytic isomorphism

from Q onto f(Q).
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Local Inversion Theorem and the Open Mapping Theorem

Remark 7 :
The function f(z) = e” is non injective on C and f'(z) # 0 for all

z € C. This example shows that we can not replace in the above
corollary the assumption f injective by f'(z) #0; V z € Q.
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Local Inversion Theorem and the Open Mapping Theorem

Remark 8 :

We consider U and V respectively the neighborhood of zy and of
wo = f(zp) as in theorem 6.1 and assume that kK =1 (i.e.

f'(z0) # 0). By residue theorem, the unique solution z = g(w) of
the equation w = f(z) for w € V is given by:

s) = 5= | B, )

where 7 is the circle é(;zo, of center zg and radius r. More
generally for any hoIomorphlc function h on Q, we have

hostw) = 5 [ FE de 5)

It follows from the explicit formula of g(w) that g is holomorphic.
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Mittag-Leffler's Theorem

Theorem (Mittag-Leffler's Theorem)

Let (an)n be a sequence of complex numbers such that the
sequence (|an|)n is increasing and |a1| > 0. If

f: C\{an; n€ N} — C is a holomorphic function such that a,
is a simple poles of f, whenever n € N, (thus nli)Too lan| = +00).

We assume that there exists a sequence of circles (Cy)y centered
at the origin such that the sequence (Ry)n of their radius is
increasing and limy_,, Ry = +00 and the poles of f are not on
Cy for all N € N. We assume also that there exists M such that
|f| < M < +o00 on the circles Cy, whenever N € N. Then

1

+oo
f(z) = f(0) + >_ Res(f, an) [Z — ;]. (6)
—1 n n
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Mittag-Leffler's Theorem

Proof
For w € C which is not a pole of f, the function g(z) =

has w and a; as poles, whenever j € N. We have

Res(g, an) = lim (z — an) f(z) _ Res(f,an)

z—ap zZ—w an — W
and
- f(2)
Res(g,w) = ZI|_>n;"(z - W)Z = f(w).
Then,
1 f(2) Res(f, a,)
— dz=1f —_—
2w CN27WZ (w) + Z an —w

|an|<Rn
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Mittag-Leffler's Theorem

We take this formula at 0, we find

2im z a
CN ‘an|<RN n

We deduce from the last formulas that

fw -0y = 3 [Rebe) Relbad), L[ gy 2

o <R an an—w 2T Jc, Z— |
n N
Z [(Resf, an)  Res(f, a,,)} LW / f(2)
= - v S —
o 1<Ru an an—w 2t J¢, z(z —w)
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Mittag-Leffler's Theorem

If ze Cyn, |z—w| > |z| — |w| = Ry — |w]| and

/ D) gl MRw
oy Z(z —w)

~ Rn(Rw — [wl) n—too

Then
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Mittag-Leffler's Theorem

Remark 9 :
The sequence (Cpy )y of circles can be replaced by a sequence of
closed simple curves such that limy_o Ry = +00, with

RN = infzeCN |Z‘
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Mittag-Leffler's Theorem

In use of Mittag-Leffler's theorem, we prove that

Indeed, we consider the function g(z) = tanz. The poles of g are
zx = 5 + km, k € Z and the correspondent residue is

z— 5 —km)sinz
sz~ lim (s —kr)tanz = fm CoE Km0z
2 g thm z— 5tk cos z
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Mittag-Leffler's Theorem

We show that |g| is bounded on all the circles

Cn ={z € C; |z| = N7}. Recall that if z = x + iy, then

| cos z|? = cos? x + sinh? y and |sin z|? = sin? x 4 sinh? y.
. 2 .2

If Tm(z)| > 1, [tanz|® = % < cotanh(1).

cos® x +sinh” y

However if [Imz| < 1, x = Rez is in one of the intervals

[-N7,—Nm + 1] and [N7 — 1, N7]. We remark that

cosh? 1

| cos z| > | cos x| > cos(1) and consequently | tan z|*> < 5
cos- 1
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Mittag-Leffler's Theorem

The function |g(z)| is bounded on Cy by a constant independent
of N. Then by Mittag-Leffler's theorem

=2 1 1 = 2z

tanzz_zjl(z—(nw+g)+z+(mr+§)) :;MV—ZT

n—
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Mittag-Leffler's Theorem

In use of Mittag-Leffler's theorem, we prove that

+oo
1 1 2(—1)"
11 3R 2]

sinz  z & z2—nPn?
i 1 1 . .
The function f(z) = —— — = has 0 as a removable singularity.
Sin z V4

Each point z = km, (k € Z*) is a simple pole of f because
_k &
lim (2 — kr)f(z) = lim C=KME=8IN2) gy e

z—km z—km zsinz )
leave to the reader to show that on the sequence of circles (Cy)n

: : T . :
of center 0 and radius respective Ry = N7 + > f is uniformly
bounded.)



Mittag-Leffler's Theorem

Take the sequence (a, = nm)pez+. By Mittag-Leffler's theorem,

We have
1 1 1
© = 0 S (L )
(2) +Z z—k7r+k7r+z+k7r km
_+OO2(—1)kz
*Zzz_kzz
k=1
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Evaluation of Some Definite Integrals

where R is a rational function without poles on the unit circle. We
take z = ¢'t, t € [0,27] and y(t) = €', t € [0, 27].

I = /lR(;(z—i),;(z—i-i)) dz

= 27‘(’21{68(%/‘-\’(%(2 - %), %(z + %)))

The summation is extended to the poles of the function
(1 1 1.1

1 . o g
ER(E(Z — ;)7 5(z + ;))) in the unit disc.
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Evaluation of Some Definite Integrals

27
dt
= [T e
o 4a-tsint

2i
zp), where zy the only pole of the

z +2Ziaz -1’
function (W;z—l) in the unit disc. zp = —ia+iva% — 1.

| = 27Res(

The residue is ! — . and thus
Zp +1a
/27r d 2«
o atsint a2_-1
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Evaluation of Some Definite Integrals

where P and @ are two polynomials such that deg @ > deg P + 2
and Q(x) #0, Vx € R.
P(z)

We consider the function f(z) = @)
z

defined by the semicircle of radius R and centered at 0 situated
inside the upper half plane Ht = {z = x +iy; y > 0}. Let ['g be
the oriented closed curve obtained by the juxtaposition of v and
the interval [—R, R]. (figure 1). We choose R large enough such
that the poles of f are situated inside the disc

D(0,R)={ze€C; |z| < R}.

and the closed curve vg
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Evaluation of Some Definite Integrals

/FR f(z) dz = /VR f(z) dz+/R f(x) dx = 2in Z Res(f, z;).

—-R Imz;>0
The summation is extended to the poles of the function f situated
inside the upper half plane H* = {z = x +iy; y > 0}.

y

~R 0 R X
figure 1:
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Evaluation of Some Definite Integrals

Lemma (First Jordan’s Lemma)

Let f be a continuous function defined on a sector 6y < 6 < 0.
We assume that

lim R sup |f(z)| =0,

R—+o00 ZGAR

then lim / f(z) dz =0, where Ag is the curve defined by the
Ar

R—+o00
arc 0y < 0 <6, and |z| = R.
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Evaluation of Some Definite Integrals

The lemma results by dominated convergence theorem.

In use of the first Jordan's lemma,

/+0<> f(x) dx = 2im Z Res(f, z;).

- Imz;>0
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Evaluation of Some Definite Integrals

I—/+OO dx _1/+°° dx
CJo 14x0 2 ) o 14x6

The poles of f inside the upper half plane _
Ht ={z=x+iy; y >0} arez; =e%, zp =e2 =iand

iS5
zz=es . Thus | = 2.
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Evaluation of Some Definite Integrals

First case P and @ are two polynomials such that
deg @ > deg P+ 2, Q(x) # 0, Vx € R and X a real number. Let
P(z) ix
f(z) = e,
(2) 6
If A > 0, we integrate the function f on the curve yg U[—R, R],
figure 1 and we find

R—+00

[ @) dz’ﬁ/ F(RED)R d) — 0.
TR 0
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Evaluation of Some Definite Integrals

+o0 P( )
This yields that e dx = 2irm Res(f, z
’ | aer 2, Feslfz)
If A <0, we remark that /(—X) = /()), or we can integrate the
function f on the closed curve defined by the juxtaposition of the
interval [—R, R] and of the semicircle of radius R and centered at
0, situated inside the lower half plane H~ = {z = x +iy; y < 0},
+o00 P( )

we find, e dx = —2ir Res(f, z), the

| o 2o,
summation is extended to the poles of f situated inside the lower
half plane H~™ = {z = x +1iy; y < 0}.

Imz;>0
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Evaluation of Some Definite Integrals

Second case A € R*, P and @ are two polynomials such that
deg @ =deg P+ 1 and Q(x) # 0, Vx € R. We set

P(Z) iz P(Z)
f(z) = @e and g(z) = @)
The integral is convergent but not absolutely convergent. We can
make an integration by parts and we return to the above case. To
evaluate the integral, it suffices to evaluate the integral for A > 0.
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Evaluation of Some Definite Integrals

[ e e < /7r g(Re®)|Re k50 g < M/ﬂe)‘RSi"e do
TR 0 0

w/2 ) /2
2/\/I/ e—)\Rsme do < 2/\/]/ e 27>r\R0 db = 2M(
0 0

IN

 2)\R

M = sup R|g(Re'’)|. (We can deduce that
R>0

s
lim / e Rsin g9 — 0 by dominated convergence theorem).
R—+o0 0

BLEL Mongi Global Expression of Cauchy’s Theorem



Evaluation of Some Definite Integrals

Thus for A > 0,

oo P(X) 1Ax _ o~ i
/_Oo We dx = 2ir Z Res(f, z;).

Iij>0
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Evaluation of Some Definite Integrals

+o0o el)\x
a>0, I\ )—/ — dx.
oo X—1a
If A >0, I()\) = 2ime 2.

If A <0, /(\) =2im > Res(f,z), z the poles of f inside the
lower half plane, but f don’t have poles in this half plane, thus

I(\) = 0.
+00 iz

| = / w We set f(z) = SERVVA integrate the function f
o X z

on the following closed path (figure 2).
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Evaluation of Some Definite Integrals

TR

Ve

figure 2:
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Evaluation of Some Definite Integrals

To compute this integral, we need the following lemma

Lemma (Second Jordan’s Lemma)

A
Iff(z) = S + Z anz", f defined on a sector 0y < 6 < 01. Then

n>0

/ f(Z) dz 3 1(91 — 90)A

r
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Evaluation of Some Definite Integrals

Proof

01 . . 01 01 . .
/ f(z) dz = / f(re%)ire® do = iA / do+i / g(rel)irel? do,
Yr 0 (%

o o o
01

g is a holomorphic function, thus lim g(re%)ire’® do = 0.
r—0 0o
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Evaluation of Some Definite Integrals

We come back to the computation of the following integral

+00 o
| = / wdx. By residue theorem,
X

—0o0

/er(x) dx—[y f(z) dz—l—/er(x) dx+LRf(z) dz = 0.

\/ f(z) dz|:|/ ciRe’ d9|§/ e Rsinl g — 0.
YR 0 0 R—+o00

By second Jordan’s lemma / f(z) dz 2 im, thus | = 7.
r—

r
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Evaluation of Some Definite Integrals

T x sin ax cos bx
=2 22
oo xc+c
We has the following identity
2sin ax cos bx = sin(a + b)x + sin(a — b)x. Thus
| = Im(h) + Im(h), with

+o0o  i(a—b)x +o0o i(at+b)x
l]_ :/ Xezizdx, and / X6272dx
oo X°tC o X°FcC

dx, with a,b € R and ¢ > 0.

We remark that if a = b or a = —b, the computation of / turns to
the computation of /; or /. We assume that a # b and a # —b.
h=ire (@b if a> pand i = —ime®=b) if a < b.
Furthermore f = ire=(®*P)< if a > —p and I, = —ime(@+b)e if

a < —b.
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Evaluation of Some Definite Integrals

Thus

I == (sign(a — b)e~127ble 4 sign(a + b)e*|3+b|c> .

(sign(x) =1, if x > 0 and sign(x) = —1, if x < 0.)
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Evaluation of Some Definite Integrals

We deduce from the above example that the Fourier Plancherel

. X . .
transform of the function f(x) = ——— is the function
X<+ c

g(x) = / f(t)e 2™t dt = —imsign(x)e2"Xle, v x £ 0.

—00

The function f is in L2(R) but not in L}(R). The same for its
Fourier Plancherel transform g.
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Evaluation of Some Definite Integrals

where Q(x) #0, V x > 0, deg Q — deg P > 2. We consider the
P(z)
Q(2)
determination (branch) of log z such that log z = In |z| 4 i6,
0<6<2r.)

closed following curve and f(z) = (log z). (log z is the

TR

e

T
¥
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Evaluation of Some Definite Integrals

R p(x " P(x
[ aura e [ [ G e
r TR
T / f(z) dz = 2im ) " Res(f).

The summation is extended to the poles of the function f in C.

According to the hypotheses on f, / f(z) dz — 0and
YR R—+o00

/ f(z) dz — 0, thus
r—0

r

+00 X +00 X
2im Z Res(f,z) = 4x> / ZEX; dx — 4i7r/0 In x ZEX; dx.

zeC 0
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Evaluation of Some Definite Integrals

SFEY In x
| = ————dx.
/o GHDeE+D)
2

Res(f, i) = “Ge ), Res(f, i) = 2G=1, Res(f, ~1) = =F".

, 16 16
__ -7
Thus | = T
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Evaluation of Some Definite Integrals

too p
(X)Xafl dX,

0 (x)

with Q(x) #0V x>0, 0 < a < deg Q — deg P. We set

f(z) = gi; 2oL with 2271

determination (branch) of log z such that logz = In |z| + i6,
0 < 0 < 27. We take the closed curve defined by the figure (3).
For R large enough and r small enough,

Integrals of Type /(a) =

= el@= gz |55 7 is the
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Evaluation of Some Definite Integrals

R r
/r —P(X)x""1 dx + /w f(z) dz —|—/R gg;eziﬂ(o‘l)xal dx

Q(x)
—i—/ f(z) dz = 2iTrZRes(f,z).
Yr

zeC

The summation is extended to the poles of the function f in C.

According to the assumption on f, / f(z) dz — 0 and
R—+4o00

TR
/ f(z) dz — 0.
zr r.—>0
Then (1 — e?™)/(a) = 2ir Y, Res(f, 2).
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Evaluation of Some Definite Integrals

too ya—1
I(a):/ 1dx with 0 < a0 < 1.
0

X+

Res(f,—1) = —ei™, thus /(a) = T

sinTa
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