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Introduction to Vector Spaces

Definition

We say that a non empty set E is a vector space on R if:

1 (Closure for the sum operation)u + v ∈ E, ∀u, v ∈ E.
2 (Associativity of the sum operation)

u + (v + w) = (u + v) + w , for all u, v ,w ∈ E
3 (The identity element) There is 0 ∈ E called the identity

element of the sum operation such that
u + 0 = 0 + u = u, ∀u ∈ E.

4 For all u ∈ E, there is v ∈ E such that u + v = v + u = 0.
The vector v is called the symmetric of u and written −u.

5 (Commutativity) u + v = v + u, ∀u, v ∈ E.
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1 (The closure of the exterior operation) ∀a ∈ R and u ∈ E,
au ∈ E,

2 If u, v ∈ E and a ∈ R, then a(u + v) = au + av .

3 If u ∈ E and a, b ∈ R, then (a+ b)u = au + bu,

4 If u ∈ E and a, b ∈ R, then (a.b)u = a(bu),

5 If u ∈ E, then 1.u = u.
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Examples

1 Rn is a vector space .

2 The set {(x , y , 2x + 3y); x , y ∈ R} is a vector space .

3 The set of polynomials P = R[X ] is a vector space .
Also the set of polynomials of degree less then n,
Pn = Rn[X ] is a vector space .
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The Vector Sub-Spaces

Definition

Let V be a vector space and F a subset of V . We say that F is a
sub-space of V if F is vector space with the same operations of
the vector space V .
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Theorem

Let V be a vector space and F a subset of V .
F is a sub-space of V if and only if

1 0 ∈ F ,

2 If u, v ∈ F , then u + v ∈ F ,

3 If u ∈ F , a ∈ R, then au ∈ F .
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Examples

1 The set F = {
(
a b
0 2a− b

)
; a, b ∈ R} is a sub-space of

V = M2(R).
2 Let A ∈ Mm,n(R) be a matrix and F = {X ∈ Rn; AX = 0}.

F is sub-space of V = Rn. (F is the set of solutions of the
homogeneous system AX = 0).

3 The set F = {(x , x + 1); x ∈ R} is not a sub-space of R2

since (0, 0) ̸∈ F .
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Example

The set W = {A ∈ Mn/ A = −AT} is a sub-space of Mn(R).
Indeed: if A,B ∈ W and λ ∈ R

(A+ B)T = AT + BT = −A− B

and
(λA)T = λAT = −λA.

Then W is a sub-space of Mn.
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Example

The set E = {(x , y) ∈ R2; xy = 0} is not a sub-space since
(1, 0) ∈ E and (0, 1) ∈ E but (1, 0) + (0, 1) = (1, 1) ̸∈ E .
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Definition

Let V be a vector space and let v1, . . . , vn be a finite vectors in V .
We say that a vector w ∈ V is a linear combination of the vectors
v1, . . . , vn if there is x1, . . . , xn ∈ R such that

w = x1v1 + . . .+ xnvn.

Example

The vector (4, 1, 1) is a linear combination of the vectors
(1, 0, 2),(2,−1, 3), (0,−1, 1) because

(4, 1, 1) = −2(1, 0, 2) + 3(2,−1, 3)− 4(0,−1, 1).
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Example

The vector (1, 1, 2) is not a linear combination of the vectors
(1, 0, 2), (0,−1, 1) because the linear system
(1, 1, 2) = x(1, 0, 2) + y(0,−1, 1) don’t have a solution.
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Example

In R4 is the vectors (a, 1, b, 1) and (a, 1, 1, b) are linear combination
of the vectors e1 = (1, 2, 3, 4) and e2 = (1,−2, 3,−4).
The vector (a, 1, b, 1) ∈ Vect(e1, e2) if and only if the linear system

AX = B is consistent with A =


1 1
2 −2
3 3
4 −4

 and B =


a
1
b
1

.

The system is not consistent because the second and the forth equa-
tions can not be true in the same time. ((2a−2b = 1, 4a−4b = 1))
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The vector (a, 1, 1, b) ∈ Vect(e1, e2) if and only if the linear system

AX = B is consistent with A =


1 1
2 −2
3 3
4 −4

 and B =


a
1
1
b

.

The system has a unique solution and in this case a =
1

3
and b = 2.
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Example

Let E be the vector sub-space of R3 generated by the vectors
(2, 3,−1) and (1,−1,−2) and let F be the sub-space of R3 gener-
ated by the vectors (3, 7, 0) and (5, 0,−7).
The sub-spaces E and F are equal.
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
2x + y = a
3x − y = b
−x − 2y = c

This system is equivalent with the following system
x + 2y = −c
−3y = a+ 2c
−7y = b + 3c

.

This system is consistent if and only if 7a− 3b + 5c = 0.
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We remark that the vectors (2, 3,−1) and (1,−1,−2) are solutions
of the system, then F ⊂ E .
With the same method, the vectors (2, 3,−1) and (1,−1,−2) are
in the sub-space F . This proves that E = F .
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Example

Is there a, b ∈ R such that the vector v = (−2, a, b, 5) is in the
sub-space of R4 generated by the vectors u = (1,−1, 1, 2) and
v = (−1, 2, 3, 1).
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Solution

The vector v = (−2, a, b, 5) is in the sub-space of R4 generated by
the vectors u = (1,−1, 1, 2) and v = (−1, 2, 3, 1) if the following

linear system is consistent AX = B with A =


1 −1
−1 2
1 3
2 1

 and

B =


−2
a
b
5

.

This system is consistent if and only if 3 = a− 2 = b+2
4 .

Then a = 5 and b = 10.

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Theorem

Let A be the matrix of type (m, n) and let X =

x1
...
xn

 be the

matrix of type (n, 1). If C1, . . . ,Cn are the columns of the matrix
A, then

AX = x1C1 + . . .+ xnCn.

Corollary

Let A be a matrix of type (m, n).
The linear system AX = B is consistent if and only if the matrix B
is a linear combination of the columns of the matrix A.
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Definition

Let S = {v1, . . . , vn} be a set of vectors in a vector space V .
We say that the vector space V is generated (or spanned) by the
set S if any vector in V is a linear combination of the vectors
v1, . . . , vn. (We say also that S is a spanning set of V ).

Theorem

Let S = {v1, . . . , vn} ⊂ Rm and A the matrix of type (m, n) with
columns v1, . . . , vn.
The set S spans the vector space Rm if and only if the system
AX = B is consistent for all B ∈ Rm.
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Example

Determine whether the vectors v1 = (1,−1, 4), v2 = (−2, 1, 3), and
v3 = (4,−3, 5) span R3.
We solve the following linear system AX = B, where

A =

 1 −2 4
−1 1 −3
4 3 5

, B =

a
b
c

 for arbitrary a, b, c ∈ R.
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A reduced of the augmented matrix is given by:1 0 2
0 1 −1
0 0 0

∣∣∣∣∣∣
−a− 2b
−a− b

7a+ 11b + c

.
This system has a solution only when 7a + 11b + c = 0. Thus, the
vectors do not span R3.
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Example

Determine whether the vectors v1 =

(
1 1
0 1

)
and v2 =

(
2 1
0 3

)
,

span the vector space F = {
(
a b
0 2a− b

)
; a, b ∈ R}.(

a b
0 2a− b

)
= xv1 + yv2 ⇐⇒


x + 2y = a
x + y = b
x + 3y = 2a− b

.

This system has the unique solution x = 2b − a and y = a− b.
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Theorem

Let S = {v1, . . . , vn} be a set of vectors in a vector space V , then

1 the set W of linear combinations of the vectors of S is a linear
sub-space in V .

2 W is the smallest sub-space of V which contains S .
This sub-space is called the sub-space generated (or spanned)
by the set S and denoted by ⟨S⟩ or Vect(S).
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Example

Let F = {
(
a b
0 2a− b

)
; a, b ∈ R}.(

a b
0 2a− b

)
= a

(
1 0
0 2

)
+ b

(
0 1
0 −1

)
. Then F is the sub-space

of V = M2(R) spanned by

{(
1 0
0 2

)
,

(
0 1
0 −1

)}
.
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Definition

We say that the set of vectors v1, . . . , vn in a vector space V are
linearly independent if the equation

x1v1 + . . . ,+xnvn = 0

has 0 as unique solution.

Example

The vectors u = (1, 1,−2), v = (1,−1, 2) and w = (3, 0, 2) are
linearly independent in R3.

xu + yv + zw = (0, 0, 0) ⇐⇒


x + y + 3z = 0

x − y = 0
−2x + 2y + 2z = 0

.
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This system has 0 as unique solution.

The matrix of this system is

 1 1 3
1 −1 0
−2 2 2

 and its determinant is

−4.
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Example

The set of vectors {P1 = 1+x+x2, P2 = 2−x+3x2,P3 = x−x2}
is linearly independent in P2.
aP1+bP2+cP3 = 0 ⇐⇒ (a+2b)+(a−b+c)x+(a+3b−c)x2 =

0 ⇐⇒


a+ 2b = 0

a− b + c = 0
a+ 3b − c = 0

.
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Definition

We say that the vectors v1, . . . , vn in a vector space V are linearly
dependent if they are not linearly independent.

Example

The vectors u = (0, 1,−2, 1), v = (1, 0, 2,−1) and
w = (3, 2, 2,−1) are linearly dependent in R4.

xu + yv + zw = (0, 0, 0, 0) ⇐⇒


y + 3z = 0
x + 2z = 0

−2x + 2y + 2z = 0
x − y − z = 0

.

This system has infinite solutions.
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The extended matrix of this system is


0 1 3
1 0 2
−2 2 2
1 −1 −1

∣∣∣∣∣∣∣∣
0
0
0
0

 and the

reduced row form of this matrix is :


1 0 2
0 1 3
0 0 0
0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

.
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Theorem

Let S = {v1, . . . , vn} be a set of vectors in a vector space V , with
n ≥ 2.
The set S is linearly dependent if and only if there is a vector of S
which is a linear combination of the rest of vectors.

Theorem

Let S = {v1, . . . , vn} ⊂ Rm and A the matrix of type (m, n) such
that its columns are the vectors of S .
The set S is linearly independent if and only if the homogeneous
system AX = 0 has 0 as unique solution.
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Examples

1 If A is a matrix of type (m, n) with m < n. Then the
homogeneous system AX = 0 has an infinite solutions.

2 If S = {v1, . . . , vn} ⊂ Rm with m < n, then the set S is
linearly dependent.
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Base and Dimension

Definition

Let S = {v1, . . . , vn} be a set of vectors in a vector space V .
We say that S is a basis of the vector space V if :

1 The set S generates the vector space V

2 The set S is linearly independent.
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Theorem

If S = {v1, . . . , vn} is a basis of the vector space V .
Any vector v ∈ V can be written uniquely as a linear combination
of vectors in the basis S .
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Remark

Let S = {e1, . . . , en} be the set of the vectors in the vector space
Rn, where

e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1, 0, . . . 0), . . . , en = (0, . . . , 0, 1).

The set S is a basis of Rn and is called the natural basis of Rn.

Exercise

Prove that S = {1,X , . . . ,X n} is a basis of the vector space Pn.
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Example

Let v1 = (λ, 1, 1), v2 = (1, λ, 1) and v3 = (1, 1, λ).
Find the values of λ ∈ R such that {v1, v2, v3} is a basis of the
vector space R3.
Solution
The set {v1, v2, v3} is linearly independent if 0 the unique solution
of the equation

xv1 + yv2 + zv3 = 0.
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This is equivalent that the following matrix has an inverse :

A =

λ 1 1
1 λ 1
1 1 λ

.

Then λ ̸∈ {−2, 1}.
The set {v1, v2, v3} generates the vector space Rn because the linear
system AX = B is consistent for all B ∈ Rn since the matrix A has
an inverse .
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Theorem

Let S = {v1, . . . , vn} be a basis of the vector space V and let
T = {u1, . . . , um} be a set of vectors.
If m > n, then T is linearly dependent .

Corollary

If S = {v1, . . . , vn} and T = {u1, . . . , um} are basis of the vector
space V , then m = n.
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Definition

If S = {v1, . . . , vn} is a basis of the vector space V then the
number of vectors n of S is called the dimension of the vector
space V and denoted by: dimV = n.

Theorem

Let V is a vector space of dimension n. If S = {v1, . . . , vn} in V .
Then
S is linearly independent if and only if S generates the vector space
V and this is equivalent also with S is a basis of V .
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Theorem

If S = {v1, . . . , vn} generates the vector space V , then it contains
a basis of the vector space V .

Remark

If S = {v1, . . . , vm} ⊂ Rn is a set of vectors and F the vector
sub-space generated by S . We have the following two algorithms
to construct a basis of F .
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First Algorithm

1 Construct the matrix A such that its rows are the vectors of S

2 The non zeros rows of any row echelon form of the matrix A
are a basis of the vector space F = ⟨S⟩.
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Second Algorithm

1 Construct the matrix A such that its columns are the vectors
of S

2 Take any row echelon form C of the matrix A.

3 Let Ck1 , . . .Ckp be the columns which contain a leading
number and k1 < . . . < kp. Then {vk1 , . . . , vkp} is a basis of
the vector space F = ⟨S⟩.
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Theorem

1 If S = {v1, . . . , vn} is a set of vectors and generates the vector
space V , then S contains a basis of the vector space V .

2 If S = {v1, . . . , vn} is a set of linearly independent vectors in
the vector space V , then there is a basis T of V which
contains the set S .

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Example

Let W be the sub-space of R5 generated by the set of following
vectors:
v1 = (1, 0, 2,−1, 2), v2 = (2, 0, 4,−2, 4), v3 = (1, 2,−1, 2, 0),
v4 = (1, 4,−4, 5,−2).

1 Find a basis of the sub-space W in {v1, v2, v3, v4}.
2 Find a basis of R5 and contains {v1, v3}.
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Solution

1 Let matrix A =


1 2 1 1
0 0 2 4
2 4 −1 −4
−1 −2 2 5
2 4 0 −2

 with columns the

components of the vectors v1, v2, v3, v4.

The reduced row form the matrix A is


1 2 0 −1
0 0 1 2
0 0 0 0
0 0 0 0
0 0 0 0

.

Then {v1, v3} is basis of the sub-space W .
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2 If e1 = (1, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0), e3 = (0, 0, 1, 0, 0).
Then {v1, v3, e1, e2, e3} is basis of R5 and contains {v1, v3}.
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Example

Let W = {(x , y , z , t) ∈ R4; 2x + y + z = 0, x − y + z = 0}
1 Prove that W is sub-space of R4

2 Find basis of the sub-space W .
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Solution

1 u = (x , y , z , t) ∈ W ⇐⇒ AX = 0, where

A =

(
2 1 1 0
1 −1 1 0

)
, X =


x
y
z
t

.

Since the set of solutions of an homogeneous linear system is
a vector sub-space, then W is vector sub-space of R4.
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2 AX = 0 ⇐⇒
{
2x + y + z = 0
x − y + z = 0

⇐⇒
{
x = −2y
z = 3y

⇐⇒ X = y


−2
1
3
0

+ t


0
0
0
1

.

Then {(−2, 1, 3, 0), (0, 0, 0, 1)} is basis of the vector sub-space W .

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Example

In the vector space V = R3, give a set S of vectors in V such that
S generates the vector space V and not linearly independent.
Solution
We can take
S = {(1, 0, 0)} and T = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.
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Coordinate System and Change of Basis

Definition

If S = {v1, . . . , vn} is a basis of the vector space V and if v ∈ V
such that

v = x1v1 + . . . xnvn

then (x1, . . . xn) are called the system of coordinates of the vector
v with respect to the basis S . We denote

[v ]S =

x1
...
xn


and called the vector of coordinates of the vector v with respect to
the basis S .
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Theorem

If B = {v1, . . . , vn} and C = {u1, . . . , un} are two basis of the
vector space V . We define the matrix CPB of type n such that its
columns are [v1]C , . . . , [vn]C . This matrix CPB has an inverse and

[v ]C = CPB [v ]B

for all v ∈ V .
The matrix CPB is called the change of basis matrix from the basis
B to the basis C .
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Exercise

Let B = {v1 = (0, 1, 1), v2 = (1, 0,−2), v3 = (1, 1, 0)} be a basis of
the vector space R3 and let C = {u1 = (1, 0, 0), u2 = (0, 1, 0), u3 =
(0, 0, 1)} be the standard basis of the vector space R3.

1 Find the following matrix CPB and BPC .

2 Find [v ]B if [v ]C =

 1
0
−1

.
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Exercise

1 CPB =

0 1 1
1 0 1
1 −2 0


BPC =

−2 2 −1
−1 1 −1
2 −1 1

.

2 [v ]B = BPC [v ]C =

−1
0
1

.
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Example

Prove that in R3, the vectors u = (1, 0, 1), v = (−1,−1, 2) and
w = (−2, 1,−2) form a basis and find the coordinate system of the
vector X = (x , y , z) in this basis.
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Solution

The matrix which columns the vectors u = (1, 0, 1), v = (−1,−1, 2)

and w = (−2, 1,−2) is A =

1 −1 −2
0 −1 1
1 2 −2

.

Since |A| = −3, then u = (1, 0, 1), v = (−1,−1, 2) and w =
(−2, 1,−2) is a basis of the vector space R3.

If X = au + bv + cw then

a
b
c

 = A−1X =

 2y + z
−x+z

3
−x+3y+z

3

.
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Example

Prove that the system of vectors S = {(1, 1, 1), (−1, 1, 0), (1, 0,−1)}
is a basis of the vector space R3.
Find the coordinates of the following vectors (1, 0, 0), (1, 0, 1) and
(0, 0, 1) in this basis.
Solution:∣∣∣∣∣∣
1 −1 1
1 1 0
1 0 −1

∣∣∣∣∣∣ = −3 ̸= 0.

Then S is a basis of the vector space R3.
(1, 0, 0) = 1

3(1, 1, 1)−
1
3(−1, 1, 0) + 1

3(1, 0,−1).
Then coordinates in the basis S is (13 ,−

1
3 ,

1
3).
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Solution

(0, 0, 1) = 1
3(1, 1, 1)−

1
3(−1, 1, 0)− 2

3(1, 0,−1).
Then coordinates in the basis S is (13 ,−

1
3 ,−

2
3).

(1, 0, 1) = (1, 0, 0) + (0, 0, 1).
Then coordinates in the basis S is (23 ,−

2
3 ,−

1
3).
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Definition

Let A be a matrix of type (m, n).
The vector sub-space of Rn spanned by the rows of the matrix A is
called the row vector space of the matrix A and denoted by:
row(A).
The vector sub-space of Rm spanned by the columns of the matrix
A is called the column vector space of the matrix A and denoted
by: col(A).
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Theorem

Let A be a matrix of type (m, n). If B is any matrix which is a
result of some row operations on the matrix A, then
row(A) = row(B).

Theorem

Let A be a matrix of type (m, n) and if B any row echelon form of
the matrix A. Then the set of non zero rows of the matrix B are
linearly independent.
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Definition

Let A be a matrix of type (m, n).
The dimension of the vector space row(A) is called the rank of the
A.
rank(A) = dim(row(A)).

Remark

Let A be a matrix of type (m, n).
The rank of the matrix A is the numbers of leading numbers in any
row echelon form of the matrix A.
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Theorem

Let A be a matrix of type (m, n), then

rank(A) = dim(row(A)) = dim(col(A)).

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Corollary

Let A be a matrix of type (m, n), then

rank(A) = rank(AT ).
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Corollary

If A is a matrix of type (m, n) and P is any invertible matrix of
type m and Q an invertible matrix of type n, then

rank(A) = rank(PAQ).
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Proof
There E1, . . . ,Ep elementary matrix of order m such that P =
E1 . . .Ep.
We know that if E is a elementary matrix which corresponds to an
elementary row operation R, then EA is the result of the elementary
row operation R on the matrix A. Then

rank(A) = rank(PA).

Also rank(PAQ) = rank(PAQ)T = rank(QTATPT ) = rank(ATPT ) =
rank(PA) = rank(A).
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Theorem

If A is a matrix of type (m, n). We have the equivalence of the
following statements:

1 The homogeneous system AX = 0 has 0 as unique solution.

2 The columns of the matrix A are linearly independent .

3 rank(A) = n.

4 The matrix ATA has an inverse.
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Theorem

Let A be a matrix of type (m, n). We have the equivalence of the
following statements

1 The system AX = B is consistent for all B ∈ Rm.

2 The columns of the matrix A generates the vector space Rm.

3 rank(A) = m.

4 The matrix AAT has an inverse.

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Definition

Let A be a matrix of type (m, n). The vector sub-space

{X ∈ Rn; AX = 0}

is called the nullspace of the matrix A and denoted by: N(A). Its
dimension is denoted by nullity(A).
Also the vector sub-space

{AX ; X ∈ Rn}

is called the image of the matrix A and denoted by: Im(A).
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Theorem

Let A be a matrix of type (m, n). Then Im(A) = col(A).

Rank-Nullity Theorem

For any matrix A of type (m, n),

nullity(A) + rank(A) = n.
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Example

Let the matrix A =


1 2 −1 −1
0 −1 2 3
2 3 0 1
1 1 1 2


1 Find a basis of the vector space N(A) .

2 Find a basis of the vector space Col(A).

3 Find the rank of the matrix A.
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Solution

The reduced row form the matrix A is


1 0 3 5
0 1 −2 −3
0 0 0 0
0 0 0 0

.

1 (−3, 2, 1, 0), (−5, 3, 0, 1) is basis of the vector space N(A) ..
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2 (0, 1, 2, 1), (−1, 2, 3, 1) is a basis of the vector space Col(A).

3 The rank of the matrix A is 2.
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Example

Let e1 = (0, 1,−2, 1), e2 = (1, 0, 2,−1), e3 = (3, 2, 2,−1), e4 =
(0, 0, 1, 0) and e5 = (0, 0, 0, 1) vectors in R4.
Is the following statements are true?

1 Vect{e1, e2, e3} = Vect{(1, 1, 0, 0), (−1, 1,−4, 2)}.
2 (1, 1, 0, 0) ∈ Vect{e1, e2} ∩Vect{e2, e3, e4}.
3 Vect{e1, e2}+Vect{e2, e3, e4} = R4.
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Solution

1 Let the matrix A which rows are the vectors e1, e2, e3.
The vector space Vect{e1, e2, e3} is the row vector space of
the matrix A.
The reduced row form of the matrix A is

A1 =

1 0 2 −1
0 1 −2 1
0 0 0 0

.

Then dimVect{e1, e2, e3} = 2.
We have Vect{e1, e2, e3} = Vect{(1, 1, 0, 0), (−1, 1,−4, 2)} if
and only if the rank of the following matrix B is 2
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B =


1 0 2 −1
0 1 −2 1
−1 1 −4 2
1 1 0 0

.

The reduced row form of the matrix B is A2 =


1 0 2 −1
0 1 −2 1
0 0 0 0
0 0 0 0

.

Then
Vect{e1, e2, e3} = Vect{(1, 1, 0, 0), (−1, 1,−4, 2)}.
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2 (1, 1, 0, 0) = e1 + e2, 2(1, 1, 0, 0) = e3 − e2.
Then (1, 1, 0, 0) ∈ Vect{e1, e2} ∩Vect{e2, e3, e4}.

3 (1, 1, 0, 0) ∈ Vect{e1, e2} ∩Vect{e2, e3, e4} and
e2 ∈ Vect{e1, e2} ∩Vect{e2, e3, e4}.
Then dimVect{e1, e2} ∩Vect{e2, e3, e4} = 2 and

dimVect{e1, e2}+Vect{e2, e3, e4} ≤ 3

Then Vect{e1, e2}+Vect{e2, e3, e4} ≠ R4.
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Example

Let in R3 the vectors, u1 = (1, 2, 1), u2 = (1, 3, 2), u3 = (1, 1, 0)
and u4 = (3, 8, 5).
Let F = Vect(u1, u2) and G = Vect(u3, u4).
Prove that F = G .
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Solution

As the vectors u1, u2 are linearly independent and also the vectors
u3, u4 are linearly independent, then
dimE = dimF = 2.
F = G if and only if the rank of the following matrix is 2, A =
1 2 1
1 3 2
1 1 0
3 8 5

.

The reduced row form of this matrix is


1 0 −1
0 1 1
0 0 0
0 0 0

.

Then F = G .
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Consider the matrix A =


1 −1 0 −1
−1 1 0 1
0 1 1 3
1 0 1 2

.

1 Find a basis of KerT and a basis of Im(T ).

2 Prove that R4 = Im(A)⊕ N(A).

3 Prove that A and A2 have the same rank.
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The reduced row echelon form of the augmented matrix of the sys-
tem AX = 0 is
1 0 1 2
0 1 1 3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0


1 N(A) = {(−z − 2t,−z − 3t, z , t) : z , t ∈ R}

and {(1, 1,−1, 0), (−2,−3, 0, 1)} is a basis of N(A)
2 {(1,−1, 0, 1), (−1, 1, 1, 0)} is a basis of Im(A)
3 As {(1, 1,−1, 0), (−2,−3, 0, 1), (1,−1, 0, 1), (−1, 1, 1, 0)} is a

basis of R4, then R4 = Im(A)⊕ N(A).
4

X ∈ N(A2) ⇐⇒ A2X = 0 ⇐⇒ AX ∈ N(A)

⇐⇒ A(X ) ∈ N(A) ∩ Im(A) ⇐⇒ AX = 0.

Mongi BLEL The Vector Spaces



Introduction to Vector Spaces
Vector Sub-Spaces

Linear Combination and Generating Sets
Linear Dependence and Independence

Base and Dimension
Coordinate System and Change of Basis

Rank of Matrix

Then the matrices A and A2 have the same rank.
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