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Matrices and Matrices Operations

Definition

A real matrix is a rectangular array whose entries are real numbers.
These numbers are organized on rows and columns. A m × n
matrix will refer to one which has m rows and n columns, and the
collection of all m × n matrices of real numbers will be denoted by
Mm,n(R). We adopt the notation, in which the (j , k)th entry of
the matrix A (that in row j and column k) is denoted by aj ,k and
the matrix A = (aj ,k).
A matrix in Mm,n(R) is called a matrix of dimension (or of type)
(m, n).
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Definition

• Two matrices A = (aj ,k) and B = (bj ,k) in Mm,n(R) are called
equal if aj ,k = bj ,k for all j , k
• A matrix in M1,n(R) is called a row matrix.
• A matrix in Mm,1(R) is called a column matrix
• If the entries of a matrix are zero, we denote this matrix (0) or 0
• A matrix in Mn,n(R) is called a square matrix of type n and
Mn,n(R) will be denoted by Mn(R)
• A square matrix A = (aj ,k) ∈ Mn,n(R) is called diagonal if

aj ,k = 0 if j ̸= k , example A =

1 0 0
0 0 0
0 0 3

.
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Definition

A square matrix A = (aj ,k) ∈ Mn,n(R) is called upper triangular if
aj ,k = 0 if j > k
A square matrix A = (aj ,k) ∈ Mn,n(R) is called lower triangular if
aj ,k = 0 if j < k
A diagonal matrix A = (aj ,k) in Mn(R), where aj ,j = 1 is called
the identity matrix and denoted by In.
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Matrix Operations

Matrix algebra uses three different types of operations.

1 Matrix Addition: If A = (aj ,k) and B = (bj ,k) have the same
dimensions (or the same type), then the sum A+ B is given
by A+ B = (aj ,k + bj ,k).

2 Scalar Multiplication: If A = (aj ,k) is a matrix and α a scalar
(real number), the scalar product of α with A is given by
αA = (αaj ,k).
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3 Matrix Multiplication:
1 If A ∈ M1,n(R) is a row matrix, A = (a1, . . . , an) and

B ∈ Mn,1(R) a column matrix, B =

b1
...
bn

, we define the

product A.B by:

AB = a1b1 + · · ·+ anbn.

This matrix is of type (1, 1) (one column and one row) and
called the inner product of A and B.

2 If A = (aj,k) ∈ Mm,n(R) and B = (bj,k) ∈ Mn,p(R), then the
product AB is defined as AB = (cj,k) ∈ Mm,p(R), where cj,k is
the inner product of the j th row of A with the k th column of B

cj,k =
n∑

ℓ=1

aj,ℓbℓk .
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The operations for matrix satisfy the following properties

Theorem

Let A,B,C denote matrices in Mm,n(R), and a, b ∈ R.
1 A+ B = B + A,

2 A+ (B + C ) = (A+ B) + C,

3 a(A+ B) = aA+ aB,

4 (a+ b)A = aA+ bA,

5 (ab)A = a(bA),

6 If 0 is the null matrix in Mm,n(R), then A+ 0 = A.

7 ImA = A and AIn = A,
If D ∈ Mn,p(R), E ∈ Mp,q(R) and F ∈ Mr ,m(R), then

8 A(DE ) = (AD)E,

9 (A+ B)D = AD + BD,

10 F (A+ B) = FA+ FB,
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Remark 1 :
Let A ∈ Mm,n(R) and B ∈ Mn,p(R). If B1, . . . ,Bp are the
columns of B, then the columns of AB are A.B1, . . . ,A.Bp.

If B =

B1 B2 . . . Bp b1,1 b1,2 . . . b1,p
...

...
...

...
bn,1 bn,2 . . . bn,p

, then

AB =

AB1 AB2 . . . ABp c1,1 c1,2 . . . c1,p
...

...
...

...
cm,1 cm,2 . . . cm,p

, where

cj ,k =
n∑

i=1

aj ,ibi ,k .
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Remarks 2 :

1 The multiplication operation of matrix is not commutative i.e.

AB ̸= BA in general. For example A =

(
0 1
0 0

)
and

B =

(
0 0
1 0

)
. Then AB =

(
1 0
0 0

)
and BA =

(
0 0
0 1

)
.

2 If A =

(
0 1
0 0

)
, then A2 = 0.
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Definition

The transpose of the matrix A = (aj ,k) in Mm,n(R) is the matrix
in Mn,m(R), denoted by AT and defined as follows:
AT = (bj ,k), where bj ,k = ak,j .

Theorem

Let A,B ∈ Mm,n(R) and C ∈ Mn,p(R), then
1 (A+ B)T = AT + BT ,

2 (AC )T = CTAT ,

3
(
AT

)T
= A.
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Definition

A square matrix A is called symmetric if AT = A.
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Definition (The Elementary Row Operations)

There are three elementary matrix row operations:

1 (Interchange) Interchange two rows,

2 (Scaling) Multiply a row by a non-zero constant,

3 (Replacement) Replace a row by the sum of the same row and
a multiple of different row.
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Definition

Two matrix A and B in Mm,n(R) are called row equivalent if B is
the result of finite row operations applied to A. We denote A ∼ B
if A and B are row equivalent. (A ∼ B is equivalent to B ∼ A).
We denote the row operations as follows:

1 The switches of the j th and the kth rows is indicated by: Rj ,k

2 The multiplication of the j th row by r ̸= 0 is indicated by:
r · Rj .

3 The addition of r times the j th row to the kth row is indicated
by: rRj ,k .
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Definition (Row Echelon Form)

A matrix in Mm,n(R) is called in row echelon form if it has the
following properties:

1 The first non-zero element of a nonzero row must be 1 and is
called the leading entry.

2 All non-zero rows are above any rows of all zeros,

3 Each leading entry of a row is in a column to the right of the
leading entry of the row above it.
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Definition (Reduced Echelon Form)

A matrix in Mm,n(R) is called in reduced row echelon form if it
has the following properties:

1 The matrix is in row echelon form,

2 Each leading number is the only non-zero entry in its column.
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Example

1

1 −1 2
0 1 3
0 0 0

 is in row echelon form but is not reduced:

2

1 0 2
0 1 5
0 0 0

 is in reduced row echelon form:

3

1 −1 2
0 1 5
3 0 0

 is not in row echelon form.
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2 3 −1
3 1 2
4 1 0

 −1R1,2−→

2 3 −1
1 −2 3
4 1 0


R1,2−→

1 −2 3
2 3 −1
4 1 0

 −2R1,2,−4R1,3−→

1 −2 3
0 7 −7
0 9 −12


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1
7
R2−→

1 −2 3
0 1 −1
0 9 −12

 −9R2,3−→

1 −2 3
0 1 −1
0 0 −3



− 1
3
R3−→

1 −2 3
0 1 −1
0 0 1

 −3R3,1,1.R3,2−→

1 −2 0
0 1 0
0 0 1

 2R2,1−→

1 0 0
0 1 0
0 0 1


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
2 −3 4 −2 0
3 −1 2 −3 2
−2 −3 4 3 2
−3 1 0 3 1

 (−1)R1,2−→


2 −3 4 −2 0
1 2 −2 −1 2
−2 −3 4 3 2
−3 1 0 3 1



R1,2−→


1 2 −2 −1 2
2 −3 4 −2 0
−2 −3 4 3 2
−3 1 0 3 1

 (−2)R1,2−→


1 2 −2 −1 2
0 −7 8 0 −4
−2 −3 4 3 2
−3 1 0 3 1


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2R1,3,3R1,4−→


1 2 −2 −1 2
0 −7 8 0 −4
0 1 0 1 6
0 7 −6 0 7

 R2,3,1R2,4−→


1 2 −2 −1 2
0 1 0 1 6
0 −7 8 0 −4
0 0 2 0 3



7R2,3−→


1 2 −2 −1 2
0 1 0 1 6
0 0 8 7 38
0 0 2 0 3

 R3,4−→


1 2 −2 −7 2
0 1 0 1 6
0 0 2 0 3
0 0 8 7 38


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−4R3,4−→


1 2 −2 −1 2
0 1 0 1 6
0 0 2 0 3
0 0 0 7 26

 1
2
R3,

1
7
R4−→


1 2 −2 −1 2
0 1 0 1 6
0 0 1 0 3

2
0 0 0 1 26

7



−2R2,1−→


1 0 −2 −3 −10
0 1 0 1 6
0 0 1 0 3

2
0 0 0 1 26

7

 2R3,1−→


1 0 0 −3 −7
0 1 0 1 6
0 0 1 0 3

2
0 0 0 1 26

7


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3R4,1−→


1 0 0 0 29

7
0 1 0 1 6
0 0 1 0 3

2
0 0 0 1 26

7

 (−1)R4,2−→


1 0 0 0 29

7
0 1 0 0 16

7
0 0 1 0 3

2
0 0 0 1 26

7


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Fractions can be avoided as follows:

−4R3,4−→


1 2 −2 −1 2
0 1 0 1 6
0 0 2 0 3
0 0 0 7 26

 7R1,7R2−→


7 14 −14 −7 14
0 7 0 7 42
0 0 2 0 3
0 0 0 7 26



1R4,1,−1R4,2−→


7 14 −14 0 40
0 7 0 0 16
0 0 2 0 3
0 0 0 7 26

 7R3,1,−2R2,1−→


7 0 0 0 29
0 7 0 0 16
0 0 2 0 3
0 0 0 7 26



Mongi BLEL Elementary Row Operations on Matrices



Matrices and Matrices Operations
The Elementary Row Operations

The Inverse Matrix

1
7
R1,

1
7
R2,

1
2
R3,

1
7
R4−→


1 0 0 0 29

7
0 1 0 0 16

7
0 0 1 0 3

2
0 0 0 1 26

7


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Theorem

Each matrix is row equivalent to one and only one reduced echelon
matrix.
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Definition

We say that a square matrix A of type (n, n) (or of order n) is
invertible if there is a square matrix B of type (n, n) such that
AB = BA = In.
We denote A−1 the inverse matrix of A.

Theorem

A matrix A is invertible if there is a square matrix B such that
AB = In.
The inverse matrix of a matrix A is unique and will be denoted by
A−1.
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Theorem

1 The inverse matrix if it exists is unique,

2 The inverse matrix of In is In.

3 (A−1)−1 = A.

4 If A and B are invertible in Mn(R), then (AB)−1 = B−1A−1.

5 If A1, . . . ,Ak are invertible in Mn(R), then

(A1. . . . .Ak)
−1 = A−1

k . . . . .A−1
1 .

6 If A is invertible, then (rA)−1 = 1
r A

−1, for all r ∈ R∗.

7 If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .
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Definition

We say that a matrix E of order n is an elementary matrix if it is
the result of applying a row operation to the identity matrix In.
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Remarks

1 Let the matrix A =

1 −1 0
2 1 3
1 −2 1

 and the elementary matrix

E =

1 0 0
0 0 1
0 1 0

 which is the result of switching the second

and the third rows of I3.

We have R2,3A = EA =

1 −1 0
1 −2 1
2 1 3

.
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2 An other example: let A =

1 0 2 3
2 −1 3 6
1 4 4 0

 and the

elementary matrix E =

1 0 0
0 1 0
5 0 1

 = 5R1,3I3.

We have 5R1,3A = EA =

1 0 2 3
2 −1 3 6
6 4 14 15

.
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In general we have

Theorem

For all A ∈ Mm,n(R) and R an elementary row operation on
Mm,n(R), E an elementary matrix such that E = R(Im). Then

EA = R(A)

where R(A) is the result of the elementary row operation R on A.
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Theorem

If E is an elementary matrix, then E has an inverse and its inverse
is an elementary matrix.

Theorem

If A is a square matrix of order n. The following are equivalent:

1 The matrix A has an inverse.

2 The reduced row echelon form of the matrix A is In.

3 There is a finite number of elementary matrices E1, . . . ,Em in
Mn(R) such that A = E1 . . .Em.
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(Algorithm)
Let A ∈ Mn(R)

1 Let [B|C ] be the reduced row echelon form of the matrix
[A|I ] ∈ Mn,2n(R).

2 If B = In, then C = A−1.

3 If B ̸= In, the matrix A is not invertible.
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Example

The inverse matrix of the matrix A =

0 1
2 −1

2
1 0 1
2 1

2 1


0 1

2 −1
2

1 0 1
2 1

2 1

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


R1,2,R2,3−→

1 0 1
2 1

2 1
0 1

2 −1
2

∣∣∣∣∣∣
0 1 0
0 0 1
1 0 0


−2R1,2−→

1 0 1
0 1

2 −1
0 1

2 −1
2

∣∣∣∣∣∣
0 1 0
0 −2 1
1 0 0


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(−1)R2,3−→

1 0 1
0 1

2 −1
0 0 1

2

∣∣∣∣∣∣
0 1 0
0 −2 1
1 2 −1


2R2,2R3−→

1 0 1
0 1 −2
0 0 1

∣∣∣∣∣∣
0 1 0
0 −4 2
2 4 −2


(−1)R3,1,2R3,2−→

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−2 −3 2
4 4 −2
2 4 −2


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0 1
2 −1

2
1 0 1
2 1

2 1

−2 −3 2
4 4 −2
2 4 −2

 =

1 0 0
0 1 0
0 0 1


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Example

The inverse matrix of the matrix A =


1 3 2 1
2 3 3 1
3 3 4 2
1 1 1 1

.


1 3 2 1
2 3 3 1
3 3 4 2
1 1 1 1

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(−2)R1,2,(−3)R1,3−→

(−1)R1,4


1 3 2 1
0 −3 −1 −1
0 −6 −2 −1
0 −2 −1 0

∣∣∣∣∣∣∣∣
1 0 0 0
−2 1 0 0
−3 0 1 0
−1 0 0 1


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(−1)R2,(−1)R3−→
(−1)R4


1 3 2 12
0 3 1 1
0 6 2 1
0 2 1 0

∣∣∣∣∣∣∣∣
1 0 0 0
2 −1 0 0
3 0 −1 0
1 0 0 −1


(−1)R4,2−→
(−2)R2,3


1 3 2 1
0 1 0 1
0 0 0 −1
0 2 1 0

∣∣∣∣∣∣∣∣
1 0 0 0
1 −1 0 1
−1 2 −1 0
1 0 0 −1


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(−2)R2,4−→


1 3 2 1
0 1 0 1
0 0 0 −1
0 0 1 −2

∣∣∣∣∣∣∣∣
1 0 0 0
1 −1 0 1
−1 2 −1 0
−1 2 0 −3


(1)R3,2,−1R3−→
(−2)R3,4


1 3 2 1
0 1 0 0
0 0 0 1
0 0 1 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 −1 1
1 −2 1 0
1 −2 2 −3


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R3,4−→


1 3 2 1
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 −1 1
1 −2 2 −3
1 −2 1 0


(−3)R2,1,(−2)R3,1−→

(−1)R4,1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
−2 3 −2 3
0 1 −1 1
1 −2 2 −3
1 −2 1 0

 .
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The inverse matrix of the matrix A, where A =


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

.


1 1 1 1
0 1 1 1
1 0 1 1
1 1 0 1

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 −→


1 1 1 1
0 1 1 1
0 −1 0 0
0 0 −1 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1



−→


1 0 0 0
0 1 1 1
0 −1 0 0
0 0 −1 0

∣∣∣∣∣∣∣∣
1 −1 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1



−→


1 0 0 0
0 0 0 1
0 −1 0 0
0 0 −1 0

∣∣∣∣∣∣∣∣
1 −1 0 0
−2 1 1 1
−1 0 1 0
−1 0 0 1


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−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 −1 0 0
1 0 −1 0
1 0 0 −1
−2 1 1 1



Then A−1 =


1 −1 0 0
1 0 −1 0
1 0 0 −1
−2 1 1 1

.
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