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Introduction

Consider what happens when a bowling ball strikes a pin, as in
the opening photograph. The pin is given a large velocity as a
result of the collision; consequently, it flies away and hits other
pins or is projected toward the backstop. Because the average
force exerted on the pin during the collision is large, the pin
achieves the large velocity very rapidly and experiences the
force for a very short time interval. According to Newton’s third
law, the pin exerts a reaction force on the ball that is equal in
magnitude and opposite in direction to the force exerted by the
ball on the pin.

This reaction force causes the ball to accelerate, but because
the ball is so much more massive than the pin, the ball’s

acceleration is much less than the pin’s acceleration.



Introduction

Momentum Analysis Models Force and acceleration
are related by Newton’s second law. When force
and acceleration vary by time, the situation can be
very complicated. The techniques developed in
this chapter will enable you to understand and
analyze these situations in a simple way. Will
develop momentum versions of analysis models
for isolated and non-isolated systems These
models are especially useful for treating problems
that involve collisions and for analyzing rocket

propulsion.



9.1 Linear Momentum and Its
Conservation

Consider two particles mland m2with vland v2collide as in figuer:

If a force from particle 1 acts on particle 2, then there must be a second
force—equal in magnitude but opposite in direction—that particle 2
exerts on particle 1. That is, they form a Newton’s third law action—
reaction pair, so that F,,=-F,;. We can express this condition as:
Fio, +F,;=0
Using Newton’s 2™ |aw:
mia; + mya, =0

+ mzdvz

dt =U my | ‘

dt




9.1 Linear Momentum and Its
Conservation

If th gassesalancLioale.CoRstanLNEan bring them into the
derivatives, which gives:

dt dt dt

To finalize this discussion, note that the derivative of the sum
(mq,v4 + m,v,) with respect to time is zero. Consequently, this sum
must be constant. We learn from this discussion that the quantity mv
for a particle is important, in that the sum of these quantities for an
isolated system is conserved. We call this quantity linear momentum
linear momentum of a particle or an object is defind as:
p= mv
Linear momentumis a vector quantity.
Its direction is the same as the direction of the velocity.
The dimensions of momentum are ML/T. The Sl units of momentumarekg- m/s.




9.1 Linear Momentum and Its
Conservation

If a pagticle is moving in 2-Dthon-p = My
* Using Newton’s second law of motion, we can relate the linear

momentum of a particle to the resultant force acting on the particle:

dv
szmazma

* |n Newton’s second law, the mass m is assumed to be constant. Thus,
we can bring m inside the derivative notation to give us:

dv d(mv) dp
ZFx=ma=m—: =

dt dt  dt

* This shows that the time rate of change of the linear momentum of a

particle is equal to the net force acting on the particle.
This is the form in which Newton presented the Second Law.
It is a more general form than the one we used previously.
This form also allows for mass changes.




9.1 Linear Momentum and 1Its

Conservation
. . d .
» Using the definition of momentum, (mlvimzvﬂ = 0 can be written:

EEES 5
dt

d(py + p2) = APtot — 0

dt dt
Ptot = D1 + P = constant

P1i t P2i = P1f t DP2f
Conservation of Linear Momentum
This is the mathematical statement of a new analysis model, the isolated system (momentum).

« Whenever two or more particles in an isolated system interact, the
total momentum of the system remains constant.
* This law tells us that the total momentum of an isolated system at all
times equals its initial momentum.
8




9.1 Linear Momentum and 1Its
Conservation

Momentum and Kinetic Energy

Momentum and kinetic energy both involve mass and velocity.
There are major differences between them:

[Kinetic energy is a scalar and momentum is a vector.
COKinetic energy can be transformed to other types of energy.

There is only one type of linear momentum, so there are no
similar transformations.

Analysis models based on momentum are separate from those
based on energy. This difference allows an independent tool to
use in solving problems.




9.2 Impulse and Momentum

* To build a better, let us assume that a single force Facts on a particle
and that this force may vary with time. According to Newton’s second

law: |
dp
F=—, dp = Fdt
dt /
Inegrating for time t, to t.: y ,
tr £ r
ti

Or

\\ |
|
I
Area = FAt |

|
tf

|
|

I
tf E
ti (b)
The integral is called the impulse, I, of the force acting on an object over A t.

10




9.2 Impulse and Momentum

Forces and Conservation of Momentum

In conservation of momentum, there is no statement concerning
the types of forces acting on the particles of the system. The
forces are not specified as conservative or non-conservative.
There is no indication if the forces are constant or not. The only
requirement is that the forces must be internal to the system.

COThis gives a hint about the power of this new model.




9.2 Impulse and Momentum

—T —— — (Lf = i — =
thdt) is called: Impulse-Momentum Theorm.
L
* The impulse of the force F acting on a particle equals the change in
the momentum of the particle.

« Because the force imparting an impulse can generally vary in time, it
is convenient to define a time-averaged force:
_ 1 (Y —
F=— Fdt orl = FAt
At £

In principle, if F is known as a function of time, the impulse can be

: t :
calculated from Equation (I = t_f Fdt). The calculation becomes

L

especially simple if the force acting on the particle is constant. In this
case: I= FAt

12




9.2 Impulse and Momentum

Impulse-Momentum Theorem

OThis equation expresses the impulse-momentum theorem:
The change in the momentum of a particle is equal to the impulse
of the new force acting on the particle.

OThis is equivalent to Newton’s Second Law.
OThis is identical in form to the conservation of energy equation.

OThis is the most general statement of the principle of
conservation of momentum and is called the conservation of
momentum equation.

OThis form applies to non-isolated systems.

COOThis is the mathematical statement of the non-isolated
system (momentum) model.

Impulse is a vector quantity.



9.2 Impulse and Momentum

The impulse imparted to the
More About Impulse particle by the force is the

L Impulse IS @ vector quantity. The area under the curve.
magnitude of the impulse is equal to
the area under the force-time curve.

[0 The force may vary with time.
Dimensions of impulseare ML/ T
Impulse is not a property of the
particle, but a measure of the change
in momentum of the particle.

S F




Example 9.1 The Archer

Let us consider the situation proposed at the beginning of

this section. A 60-kg archer stands at rest on frictionless ice

and fires a 0.50-kg arrow horizontally at 50 m/s (Fig. 9.2).

With what velocity does the archer move across the ice after —
firing the arrow?

(myvy; + mave; = 0),

MVt moVey = 0

_ _mg __&50_*3.)-‘ o [
Vi = = Vo = ( 60 kg (508 m/s) = 0.42i m/s




Example 9.4 How Good Are the Bumpers?

In a particular crash test, a car of mass 1 500 kg collides with a
wall, as shown in Figure 9.6. The initial and final velocities of the
car are vi= -15 m/s and vf= 2.6 m/s , respectively. If the collision
lasts for 0.150 s, find the impulse caused by the collision and the
average force exerted on the car.

C0Solution:
Conceptualize
COThe collision time is short.

OWe can image the car being brought to rest very rapidly and then
moving back in the opposite direction with a reduced speed.

Categorize

OAssume net force exerted on the car by wall and friction with the
ground is large compared with other forces.

COGravitational and normal forces are perpendicular and so do not effect
the horizontal momentum.




Example 9.4 How Good Are the Bumpers?

n a particular crash test, a car of mass 1 500 kg collides with a wall, as
hown in Figure 9.6. The initial and final velocities of the car are vi=-15
n/s and vf= 2.6 m/s, respectively. If the collision lasts for 0.150 s, find
he impulse caused by the collision and the average force exerted on the

ar. i -
Solution: 150m/s
I=Ap=0p f — Di : &gy o
= mvy — mv;
= (1500)(2.61) — (1500)(—157) After
= 2.64 X 10*i kg.m/s 20 ms

At 015




9.3 Collisions in One Dimension

The total kinetic energy of the system of particles may or may not
be conserved, depending on the type of collision. In fact, whether
or not kinetic energy is conserved is used to classify collisions as
either elastic or inelastic.

An elastic collision between two objects is one in which the total
kinetic energy (as well as total momentum) of the system is the
same before and after the collision.

An inelastic collision is one in which the total kinetic energy of the
system is not the same before and after the collision (even
though the momentum of the system is conserved).

Inelastic collisions are of two types. When the colliding objects
stick together after the collision, the collision is called perfectly
inelastic, When the colliding objects do not stick together, but
some kinetic energy is lost, the collision is called inelastic.




9.3 Collisions in One Dimension

* Perfectly Inelastic Collisions

Consider two particles of masses m1 and m2 moving with initial
velocities v1i and v2i along the same straight line, as shown in Figure.
The two particles collide head-on, stick together, and then move with
some common velocity vf after the collision.

myvy + myvy; = (My+my) vy

Before collision

my < My
Vii Nagi

(

\

(a)
ml + mz After collision

Ny .

f

(b)
Stick together in one-object. 19

This is true only if the two objects



9.3 Collisions in One Dimension

Perfectly Elastic Collisions

For this type of collisions: kinetic energy and liner momentum are
conserved:

Before collision
MV + MyVp; = M Vqf + MV

. b ,
) — et 1y |

4)

1 —1 —1 , 1 )
5 M1 Vi + 5 Mg Vai~ = 5My Vif + e . yoki=—a00

)
We can use these equations directly to solve our problems to go directly
to some special cases:
My V12 + My V% = My U15° 4+ My Uyp°

Mq Vyj — My Vi = My V™ — My Vi

2 2 20
my( vy — vlfz) = mz(vz,f — ”Ziz)



9.3 Collisions in One Dimension

Perfectly Elastic Collisions
mlvli + mzvzi — mlvlf + mzvzf

ml(vli = Ulf) = mz(vzf = vZE) e K
ml(vliz_ vlfz) - mz( vzfz— 1?2!-2)
ml(vli - vlf)(vli -+ vlf) = mz(l?zf — Uzi)(vzf 4= in) e FK

To obtain our final result, we divide Equation ** by Equation * and
obtain:

(1?1,{ + vlf) = (sz =+ 172,:)
rﬂﬂ < S Fa W | -‘\ — _fﬁﬂ — -y ~y '\
\V1i — V2i) = —\Vif — V2r)

21



9.3 Collisions in One Dimension

Perfectly Elastic Collisions
my(vy; —vip) = mo(vap — Vo) oo
ml(vl,; = Ulf)(vli + vlf) = mz(vzf = vzl-)(vzf + vzl-) cer KK
(v1; + V1f) = (sz + vy;)
(v1; — vyi) = —(’Ulf - L’zf)
Suppose that the masses and initial velocities of both particles are

known:
m —my Zmz
vlf — V1i + V2

m4q + m- m4 + mo
r 2??11 ] + {mz — mi-l
v = Vi v
2f {ml + m2‘ 1 iml + sz 2t



9.3 Collisions in One Dimension

Perfectly Elastic Collisions

= _ml_m-zv--l_ Zmz —
1f m, +m, 11 21

Zml mz — m1
Uy = Vi + Vai
mq +m, mq +m,

Let us consider some special cases. If m; = m,, then tow Equations
show us that

Vi = Vi
And

Var = Vii




9.3 Collisions in One Dimension

Perfectly Elastic Collisions
If m, is initially at rest v,; = 0
So the equations

mq; —m, 2m,
Vif = Uy T U2i
mq +m, my +m,
2m4 m, —my
Uyf = Vi T V2i
m; +m, mq +m,

becomes:




9.3 Collisions in One Dimension

Perfectly Elastic Collisions

If m, is initially at rest v,; = 0

mqy —m, 2my

Vi and vyp = (2%,

vlf —

m; +m, my; +m,

Now

If m1lis much greater than m, and v,; = 0, we see the tow Equations
that v1 5 = v1; andv, s = vy;. Thatis, when a very heavy particle
collides head-on with a very light one that is initially at rest, the heavy
particle continues its motion unaltered after the collision and the light
particle rebounds with a speed equal to about twice the initial speed of
the heavy particle.




9.3 Collisions in One Dimension

Example 9.6 Carry Collision Insurance
An 1800-kg car stopped at a traffic light 1s struck from the rear by a 900-
kg car, and the two become entangled, moving along the same path as
that of the origmally moving car. If the smaller car were moving at 20.0
m/s before the collision, what is the velocity of the entangled cars after
the collision?
Solution:

mlvl. +m.\v, =m.Vv, . +m.,y
i 224

1717 2Var
- (1800)(0) +(900)(20) = (1800 +900)v,
C
=V, = 20020 6.67m/s

2700



Example 9.7 The Ballistic Pendulum

The ballistic pendulum (Fig. 9.11) 1s an apparatus used o
measure the speed of a fast-moving projectile, such as a bul-
let. A bullet of mass my is fired into a large block of wood of

mass mg suspended from some light wires. The bullet em-
beds in the block, and the entire system swings through a
height A How can we determine the speed of the bullet
from a measurement of 2

\\\ \\\
MTUIA a7 o O
(1) g = ————
iy + me
ml+m2
. T [
- » 1 v
Kg + Usg = K¢ + I ® ®
(a)
- 1 )
(2) Kg = 3(m; + mg)vg’

a 9
LOBSTY

mz("’l*m'z)@

my

+0=0+(m|+mg)gh




9.3 Collisions in One Dimension

Example 9.8 A Two-Body Collision with a Spring
A block of mass m; = 1.60 kg initially moving to the right with a speed of
4.00 m/s on a frictionless horizontal track collides with a spring attached

to a second block of mass m, =2.10 kg mitially moving to the left with a
speed of 2.50 m/s. The spring constant 1s 600 N/m.

(A) Find the velocities of the two blocks after the collision

vy; = ( £.00i ) m/s Vo; = (-2.50i) m/s T (3.001) m/s v,
k [ R k 4
AMAMAAIAL - ™2 | L m
™ MWW m | .

28



9.3 Collisions in One Dimension

Example 9.8 (Continued)

Solution:
Y, LY, =y LY,
S (1.6)(HH(2.10)(-2.5)=(1.6)v, , +(2.10)v,, (1)

9.19) > v, —v,, =—(v,, —v,,)
L) —-(25)=—v  +V

2f
L6 S5=—v  +V,, (2)
2)x1.6 >104=( .6)(—v1f) + (1 .6)(vzf) 3)
(H+@3):11.55= 3.7v2f
:>v,,f,=—ll'55=3.l2m/s (4)
= 3"7

(DHin(2): V= —338m/s (5)



9.3 Collisions in One Dimension

Example 9.8 (Continued)

(B) During the collision, at the instant block 1 is moving to the right with
a velocity of +3.00 m/s, determine the velocity of block 2.

BRUAE S IAUSES RV S /RN
S (L6)(H)H(2.10)(-2.5)=(1.6)R)+2. 10w, , = v, , =—1.74m /s
(C) Determine the distance the spring is compressed at that instant.
K +U =K, +U,
1 1 ) | , 1 1

2 2 2 2
So=my, +=—myv,”  +0==my,,” +—m,v, " +—kx
o) ’ o ) T

1 , 1 'y N R | ,
= (LA +=21)(=25)" =—(1L.O)() +—2.D(=1.74)" +(600)x

8.98x 2
600

SLX = =0.173m



9.3 Collisions in One Dimension

PROBLEM-SOLVING HINTS

O0Set up a coordinate system and define your velocities with respect to
that system.

OIn your sketch of the coordinate system, draw and label all velocity
vectors and include all the given information.

COWrite expressions for the x and y components of the momentum of
each object before and after the collision.

COWrite expressions for the total momentum of the system in the x
direction before and after the collision and equate the two.

OIf the collision is inelastic, kinetic energy of the system is not
conserved, and additional information is probably required.

OIf the collision is perfectly inelastic, the final velocities of the two
objects are equal. Solve the momentum equations for the unknown
quantities.

OIf the collision is elastic, kinetic energy of the system is conserved, and

you can equate the total kinetic energy before the collision to the total
kinetic energy after the collision to obtain an additional relationship
hetween the velocitiec




9.4 Two-Dimensional Collisions

* For two dimensional collisions, we obtain two component equations for
conservation of momentum:
My Vi + MaVgj = MV + MyVspy
My Vqiy + My V34 = My Vyfy, + myVzry

consider a 2-D

problem in vy rsin 6
which particle -
1 of mass #
micollides e B //\,'9
with particle 2 o e e e W
of mass mg, | N Uy COS O
where particle | K;
2 is initially af iy sin O |
rest, as in Figure Vor

(a) Before the collision (b) After the collision

32



9.4 Two-Dimensional Collisions

Applying the law of conservation of momentum in component form and noting that

the initial y component of the momentum of the two-particle system is zero, we
obtain:

MqVy; = MyVy5COSHO + My, 6 COSQ
0 =myvrsin0 —myvyrsing

where the minus sign in last Equation comes from the fact that after the collision,
particle 2 has a y component of velocity that is downward.

If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic
energy) with v,= 0 to give:

1 1 1

= 2——— 2 = 2
5 M Vii™ =51y Vi +2m2v2f

33



9.4 Two-Dimensional Collisions

PROBLEM-SOLVING HINTS

[0Set up a coordinate system and define your velocities with respect to
that system.

CIn your sketch of the coordinate system, draw and label all velocity
vectors and include all the given information.

COWrite expressions for the x and y components of the momentum of
each object before and after the collision.

COWrite expressions for the total momentum of the system in the x and y
directions before and after the collision and equate the two..

OIf the collision is inelastic, kinetic energy of the system is not
conserved, and additional information is probably required.

OIf the collision is perfectly inelastic, the final velocities of the two
objects are equal. Solve the momentum equations for the unknown
quantities.

COIf the collision is elastic, kinetic energy is conserved, and you can
equate the total kinetic energy before and after the collision.




9.4 Two-Dimensional Collisions

Example 9.10 Collision at an Intersection

A 1 500-kg car traveling east with a speed of 25.0 m/s
collides at an intersection with a 2 500-kg van traveling
north at a speed of 20.0 m/s, as shown 1n Figure 9.14.
Find the direction and magnitude of the velocity of the
wreckage after the collision, assuming that the vehicles
undergo a perfectly inelastic collision (that is, they stick

together).

Solution:

We shall apply the conservation of momentum 1n each
direction.

X LMy, +my,. =my, . +my,. (D)
yimpy, +my, =mpy, . +my,. (2)

; |\ o
(25.01) m/s |
———— e 9
/
: x

4 .
u‘(?().()j) m/s
|




9.4 Two-Dimensional Collisions

Example 9.10 (continued)

Solving to find final velocity and direction:

(D) —: (1500)(25) +(2500)(0) = (1500 + 2500 . (3)
SV = 57500 _ 937m /s
| 4000
(2) —: (1500)(0) +(2500)(20) = (1500 +2500)v (4)
50000
SV, = =12.5m /s
‘ 4000

D+Q) v, =2 +v2 =937 +12.5% =15.6m /5

A

V. | S _
0=tan” | == |=tan” 12 =53.1I°
Vi 937




Example 9.12 Billiard Ball Collision

In a game of billiards, a player wishes to sink a target ball in
the comer pocket, as shown in Figure 9.15. If the angle w
the corner pocket is 35°, at what angle 6 is the cue ball de- —
flected? Assume that fricion and rotational motion are
unimportant and that the collision is elastic. Also assume

that all billtard balls have the same mass m.

1 9 1 9 1 2
amuy;T = smvy + Fmavys

But m; = ms = m, so that

(1) TR (VR e
(2) mvy; = mvyp + maevyy

l‘l,"-. = (V”'+ Vzl) * (V]I+ Vgl) = Ul[2 o+ l'2f2 -+ 27[[' Vg[

Because the angle between vy and vopis 0 + 35% vy, - vy, =
vpvyy cos(@ + 357), and so

(3) o= r.vllg + v-_:f2 + 2o vap cos(0 + 35%)
Subtracting Equation (1) from Equation (3) gives
0 = 2wy vor cos(@ + 35%)

0 = cos(@ + 35°%)

#435°=90° or @=55



PROBLEMS

Section 9.1 Linear Momentum and its Conservation

1. A 3.00-kg particle has a velocity of (3.001 ° -
4.003 ° ) m/s.

(a)Find its x and y components of momentum.
(b) Find the magnitude and direction of its

momen t um. m =3.00 kg, v = (3.00i — 4.00j) my/s
(a) pP=mv= {‘-1001 — 12.0:]::] kg -my's
SOLUTIONS TO PROBLEM: e ekl
| |
and | Py =—12.0 kg-m/s |
(b) p= ..h,'llpf +pl =4/(9.00)* +(12.0)* =[15.0 kg -m/s

Py

&= ta'n_1| = |= tan_LI{—l.ESII =
P )

P



PROBLEMS

Section 9.1 Linear Momentum and its Conservation

2. A 0.100-kg ball is thrown straight up into the air with an
initial speed of 15.0 m/s. Find the momentum of the ball

(a) at its maximum height and (b) halfway up to its maximum
height.

SOLUTIONS TO PROBLEM:

(a) At maximum height v= 0, so p = I 0.

(b) Its original kinetic energy is its constant total energy,

I | g | , - 1\ 2
K, == mv; ==—(0.100)kg(15.0 m/s)” =11.2]

At the top all of this energy is gravitational. Halfway up, one-half of it is gravitational anc

the other half is kinetic:

1 )
K=5.62]=-(0.100 kg)o~

[~ 50217

v= |—/————==10.6 my/s
| 0.100 kg

Then p=mv=(0.100 kg)(10.6 111,"':‘)i

p=| L0o kg -m/s ]



PROBLEMS

Section 9.1 Linear Momentum and its Conservation

4. Two blocks of masses M and 3M are placed on a horizontal,
frictionless surface. A light spring is attached to one of them, and the
blocks are pushed together with the spring between them (Fig. P9.4). A
cord initially holding the blocks together is burned; after this, the block
of mass 3M moves to the right with a speed of 2.00 m/s.

(a) What is the speed of the block of mass M? (b) Find the original
elastic potential energy in the spring if M = 0.350 kg.

SOLUTIONS TO PROBLEM: j
] ] WLl
(a) For the system of two blocks Ap=0, e Before
(a)
or Pi=Py Before
(a) v 2.00 m/s
Therefore, 0=Muv,, +(3M)(2.00 m/s) — —
L _ P -
Solving gives v, =| —0.00 m/s | (motion toward the | WA~
left). After
(b)
1 1 1 ;
(b) Eh-l = EMU_if +—(3M 030 =| 840 Figire P4

FIG. P94



PROBLEMS

Section 9.1 Linear Momentum and its Conservation

5. (a) A particle of mass m moves with momentum p. Show that
the kinetic energy of the particle is K=p2/2m.

(b) Express the magnitude of the particle’s momentum in terms
of its kinetic energy and mass.

SOLUTIONS TO PROBLEM:

. 1 7
(a) The momentum is p=mv, s0 v=— P and the kinetic energy is K =—mu =—m‘ P ‘ P .
iy 2 H 2
| r |
) 1 7 . , R 2K o
(b) K=—mv~ implies v= il = D = I =| +2mK |.
2 \ M 1'|| M




PROBLEMS

Section 9.2 Impulse and Momentum

7. An estimated force—time curve for a baseball struck by a bat
is shown in Figure PS.7. From this curve, determine

(a) the impulse delivered to the ball, (b) the average force
exerted on the ball, and (c) the peak force exerted on the ball.

SOLUTIONS TO PRORBRLEM:

(a) I = | Fdt = area under curve -~
' F=18000N
1.\".
20 000 %
1, . 5, _ h
I=—|150%x107" s)(18000 N)=| 13.5 N-s 15 000 A
2 | | 10 )
5 000
13.5 N-s -
UL"I]' F= — 3 = QDD]_\:N 0 1 9 5 f{ms)
1.50%x10"" s Figure P9.7

(c) From the graph, we see that F,,, =| 18.0 kN




PROBLEMS

Section 9.2 Impulse and Momentum

8. A ball of mass 0.150 kg is dropped from rest from a height of
1.25 m. It rebounds from the floor to reach a height of 0.960 m.
What impulse was given to the ball by the floor?

SOLUTIONS TO PROBLEM:

- . 1 45 . )
The mmpact speed 1s given by 5 mui =mgyy. The rebound speed is given by mgy, = - mo3. The

impulse of the floor is the change in momentum,

mv, up —mo; down = m| v, +7¢ ) Up

=m| 1,-"2 ghy +./2gh | up

=0.15 l{gﬁh,'lﬁl::ﬂ.ﬂ m/s” J(v0.960 m ++/1.25 m | up

=| 1.39 kg-m/s upward

43



PROBLEMS

Section 9.2 Impulse and Momentum

9. A 3.00-kg steel ball strikes a wall with a speed of 10.0 m/s at
an angle of 60.0° with the surface. It bounces off with the same
speed and angle (Fig. P9.9). If the ball is in contact with the wall
for 0.200 s, what is the average force exerted by the wall on the

ball ?

SOLUTIONS TO PROBLEM:

Ap =FAt

Ap, = m(v, — v, | = m(vcos60.0°) —movcos60.0°=0

Ap. =m(—vsin60.0°-vsin 60.0°) = —2mw sin 60.0°

=-2(3.00 kg )(10.0 m/s)(0.860)

=-52.0 kg-m/s

—52.0 ke -m/
_Ap, 520 kg-m/s

ave ~

At 0.200 s

- =[ 260 N

\ | y
e
_______:/_I_Q_n _______
_ 60.0
Yy
\O 0
S 600
\\(_
—————————— - X
e
/,f 60°
Q
FIG.P9.9



PROBLEMS

Section 9.2 Impulse and Momentum

10. A tennis player receives a shot with the ball (0.060 0 kg)
traveling horizontally at 50.0 m/s and returns the shot with the
ball traveling horizontally at 40.0 m/s in the opposite direction.

(a) What is the impulse delivered to the ball by the racquet?
(b) What work does the racquet do on the ball?
SOLUTIONS TO PROBLEM:

Assume the initial direction of the ball in the —x direction.

(@)  Impulse, I=Ap=p; —p; =(0.060 0)(40.0)i — (0.060 0)(50.0)(—i)=| 5.40i N -s

®)  Work =K, —K. =%:D.D{JD D_:[HD.DF —(50.0 :1] —[—27.0]




PROBLEMS

Section 9.2 Impulse and Momentum

13. A garden hose is held as shown in Figure P9.13. The hose is
originally full of motionless water. What additional force is
necessary to hold the nozzle stationary after the water flow is
turned on, if the discharge rate is 0.600 kg/s with a speed of
25.0 m/s?

SOLUTIONS TO PROBLEM:

The force exerted on the water by the hose is

B

mv ¢ — mv; (0.600 kg )(25.0 m/s)-0
AF A 1.00 s -

F= ﬂpwater _ 15.0 N |, Figure P9.13

According to Newton's third law, the water exerts a force of equal magnitude back on the hose.
Thus, the gardener must apply a 15.0 N force (in the direction of the velocity of the exiting water
stream) to hold the hose stationary.



PROBLEMS

Section 9.3 Collisions in One Dimension

15. High-speed stroboscopic photographs show that the head of
a golf club of mass 200 g is traveling at 55.0 m/s just before it
strikes a 46.0-g golf ball at rest on a tee. After the collision, the
club head travels (in the same direction) at 40.0 m/s. Find the
speed of the golf ball just after impact.

SOLUTIONS TO PROBLEM:
(200 )(55.0 m/s)=(46.0 g)v+(200 ¢ )(40.0 m/s)

v=| 022 m/s




PROBLEMS

Section 9.3 Collisions in One Dimension

16. An archer shoots an arrow toward a target that is sliding
toward her with a speed of 2.50 m/s on a smooth, slippery
surface. The 22.5-g arrow is shot with a speed of 35.0 m/s and
passes through the 300-g target, which is stopped by the
impact. What is the speed of the arrow after passing through the
target?

SOLUTIONS TO PROBLEM:

(myvy +myvy). =(my oy + mzifz}f

225 (35 m/s)+ 300 g(-25 m/s) =225 gv . +0

Uy = =| 1.67 m/s




PROBLEMS

Section 9.3 Collisions in One Dimension

17. A 10.0-g bullet is fired into a stationary block of wood (m
15.00 kg). The relative motion of the bullet stops inside the
block. The speed of the bullet-plus-wood combination
immediately after the collision is 0.600 m/s. What was the
original speed of the bullet?

SOLUTIONS TO PROBLEM:

Momentum 1s conserved
(10.0 x 107 kg Jo =(5.01 kg )(0.600 m/s)

v=| 301 m/s




PROBLEMS

Section 9.3 Collisions in One Dimension

18. A railroad car of mass 2.50 * 104 kg is moving with a speed
of 4.00 m/s. It collides and couples with three other coupled
railroad cars, each of the same mass as the single car and
moving in the same direction with an initial speed of 2.00 m/s.
(a) What is the speed of the four cars after the collision?

SOLUTIONS TO PROBLEM:

(a)  muvy; +3muy; =4dmov, where m = 2.50 x 10* ke
400+3(2.00) ——
vp= =| 2.50 m/s ‘
F 4 L
1 1 5, 1 ] — 7
(b) K;-K;= :I[—_LJ'H:IJ f |5 moL o iwm 301 | (2 50 x 10* ) (12.5-8.00-0.00)=| =3.75x107 ]




PROBLEMS

Setion 9.3 Collisions in One Di :

21. A 45.0-kg girl is standing on a plank that has a mass of 150 kg.
The plank, originally at rest, is free to slide on a frozen lake, which is a
flat, frictionless supporting surface. The girl begins to walk along the
plank at a constant speed of 1.50 m/s relative to the plank. (a) What is
her speed relative to the ice surface? (b) What is the speed of the plank
relative to the ice surface?

SOLUTIONS TO PROBLEM:

(a), (b)

Let v_ and v, be the velocity of the girl and the plank Initial
relative to the ice surface. Then we may say that v, —v,, is motion
. 5 : . S diagram ¥
the velocity of the girl relative to the plank, so that \
|
US—UP=1..'}U (1) = -
. Final
But also we must have m_v_+m,v, =0, since total '“F‘“'?“ 45.0 kg
momentum of the girl-plank system is zero relative to the diagram Sl __ Vg
ice surface. Therefore i
v|r'l vsllr
e
—ln.OvS + lDUE)‘p =0, or v, =-3.337, — P
150 kg
Putting this into the equation (1) above gives
FIG. P9.21

—-3.33v, —v, =150 or v, = —0.346 m/s

Then v, =-3.33(-0.346) =| 1.15 mys |



PROBLEMS

Setion 9.3 Collisions in One Di :

25. A 12.0-g wad of sticky clay is hurled horizontally at a 100-g
wooden block initially at rest on a horizontal surface. The clay sticks to
the block. After impact, the block slides 7.50 m before coming to rest.
If the coefficient of friction between the block and the surface is 0.650,
what was the speed of the clay immediately before impact?

SOILLIITTONS TO PRORI FM-:

) I . n
At impact, momentum of the clay-block system is conserved, so: el -
; ’ — 114 1D
| i .5 —
mvy =(my; +m, |Jo, bt v i
a
I v i@
After impact, the change in kinetic energy of the clay-block-surface | o,

system 15 equal to the increase in internal energy:

1 7

~my+my Joy = frd=p{my +m; )gd e 7.50 m-»

l - | 2N/~ —~

~(0.112 kg o3 =0.650(0.112 kg )(9.80 m/s” |(7.50 m) FIG. P9.25

03 =95.6 mz/"s2 v, =9.77 m/s —
('12.0 x1072 kg)vl =(0.112 kg )(9.77 m/s) v =|91.2 m/s 52




PROBLEMS

(a)

(b)

Setion 9.3 Collisions in One Di :

27. (a) Three carts of masses 4.00 kg, 10.0 kg, and 3.00 kg move on a
frictionless horizontal track with speeds of 5.00 m/s, 3.00 m/s, and
4.00 m/s, as shown in Figure P9.27. Velcro couplers make the carts
stick together after colliding. Find the final velocity of the train of three
carts. (b) What If? Does your answer require that all the carts collide
and stick together at the same time? What © *=~rr ~nllid~ im = Aiffamaad

500 m/s 3.00m/s —4.00 m/s
i —

order? _ , |
SOLUTIONS TO PROBLEM: = S \

Using conservation of momentum, (> p)

Figure P9.27

~(Zp),,.., gives

after before

[(—L.U +10+3.0) kg]t} =(4.0 kg )(5.0 m/s)+ (10 kg)(3.0 m/s)+ (3.0 kg)(—4.0 m/s).

Therefore, v=+2.24 m/s, or | 2.24 m/s toward the right ‘

. For example, if the 10-kg and 3.0-kg mass were to stick together first, they would

move with a speed given by solving
(13 keg)o; =(10 kg )(3.0 m/s)+(3.0 kg )(—4.0 m/s), or v; =+1.38 m/s.

Then when this 13 kg combined mass collides with the 4.0 kg mass, we have

(17 kg)o=(13 kg)(1.38 m/s)+(4.0 kg)(5.0 m/s), and v=+2.24 m/s

just as in part (a). Coupling order makes no difference.




PROBLEMS

32. Two automobiles of equal mass approach an intersection. One
vehicle is traveling with velocity 13.0 m/s toward the east, and the
other is traveling north with speed v2i . Neither driver sees the other.
The vehicles collide in the intersection and stick together, leaving
parallel skid marks at an angle of 55.0° north of east. The speed limit
for both roads is 35 mi/h, and the driver of the northward-moving
vehicle claims he was within the speed limit when the collision
occurred. Is he telling the truth?

SOLUTIONS TO PROBLEM:

We use conservation of momentum for the system of two vehicles ,I “
for both northward and eastwarcd components

13.0 m /s % i
For the eastward direction: S— V| -

2,07 _+x (Ea

''''''''''

M(13.0 111 s)= \1‘ coshbh. 0% H r-‘—-——

For the northward direction:

Muo,, = 2MV, 5in 55.0° FIG. P9.32

Divide the northward equation by the castward equation to find:

S=(13.0 m/s)tan55,0°= 18,0 n =| 41.5 mi/h

Thus, the driver of the north bound car was untruthtul.



PROBLEMS

Section 9.4 Two-Dimensional Collisions

33. A billiard ball moving at 5.00 m/s strikes a stationary ball of the
same mass. After the collision, the first ball moves, at 4.33 m/s, at an
angle of 30.0° with respect to the original line of motion. Assuming an
elastic collision (and ignoring friction and rotational motion), find the

struck ball’s velocity after the collision.
SOLUTIONS TO PROBLEM:

Eji: conservation of momentum for the system of the two billiard y
balls (with all masses equal), 4.33 '“;‘f 5.

- - ; - 5.00m/s

5.00 m/s+0=(433 m/s)cos 30.0%+vq, I 30°

_ N = |
Uy =120 mys S i ¢ >
= J: | w;

0=(433 m/s)sin30.0%vy, Yy

(Lh} fy =-2.16 11'l_|.'"5 e

vys =| 2.50 m/s at —60.0° FIG. P9.33 —

Note that we did not need to use the fact that the collision is perfectly elastic.



PROBLEMS

Section 9.4 Two-Dimensional Collisions

35. An object of mass 3.00 kg, moving with an initial velocity of
5.00%1 m/s, collides with and sticks to an object of mass 2.00 kg
with an initial velocity of "3.00°j m/s. Find the final velocity of
the composite object.

SOLUTIONS TO PROBLEM:
MV 1,V = (1] + 15 |V 3.00(5.00 JE - tr.[l'i]j =5.00v

V= I[E.DDE—LEDH m/s




