

Discrete Mathematics Chapter 03 Sets

إعداد وتقديم دكتور أحمد السيد كلية العلوم- قسم الرياضيات -جامعة الملك سعود aalsayedmm@gmail.com

استراتيجيات التعلم

Dr. Ahmed Alsayed- 0559596720

1- <u>Course Syllabus</u> (Credit Hours: 4 (3+2))

No	List of Topics		
1	Introduction to Number Systems: Binary System (Binary to Decimal Conversion - Decimal to Binary Conversion – Arithmetic: addition, subtraction, multiplication) Octal Number System (Conversions and Arithmetic) Hexadecimal Number System (Conversions and Arithmetic)	King Saud University College of Applied Studies & Community Service Department of Computer Science & Engineering	تاملك سعود King Saud University
2	Logic: Proposition calculus and connectives Truth tables Propositional Equivalence.		خطـة تدريـس المقرر (مقترح) Course plan
3	Set operations	رمز ورقم المقرر : 153 ريض	مقرر : الرياضيات المحددة
4	 Boolean Algebra: Boolean Functions Representation Boolean Functions Logic Gates Minimization of Circuit 	Math. 153	Discrete Mathematics
5	 Basic Concepts of Graph Theory: Graph Terminology and Special Types of Graphs Connectivity 		

Course Objectives

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms
- of mathematical thought.
- Acquire logic and proof as the basics for abstract
- thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.

Chapter 2: Sets

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

Sets (1/24)

A set is an unordered collection of objects.

The objects in a set are called the *elements*, or *members*, of the set. A set is said to contain its elements.

Dr. Ahmed Alsayed- 0559596720

Sets (2/24)

$$S = \{a, b, c, d\}$$

We write $a \in S$ to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S.

Sets (3/24)

The set *O* of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

The set of positive integers less than 100 can be denoted by $\{1, 2, 3, ..., 99\}$.

Dr. Ahmed Alsayed- 0559596720

Sets (4/24)

Another way to describe a set is to use **set builder** notation.

The set *O* of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\},\$

Sets (5/24)

 $N = \{0, 1, 2, 3, ...\}$, the set of all **natural numbers** $Z = \{..., -2, -1, 0, 1, 2, ...\}$, the set of all integers $\mathbf{Z}^+ = \{1, 2, 3, \dots\}$, the set of all positive integers $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, and q \neq 0\},\$ the set of all rational numbers **R**, the set of all **real numbers R**⁺, the set of all **positive real numbers C**, the set of all **complex numbers**.

Sets (6/24)

Interval Notation

Closed interval [a, b]Open interval (a, b)

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

Sets (7/24)

If A and B are sets, then A and B are equal if and only if $\forall x (x \in A \Leftrightarrow x \in B)$. We write A = B, if A and B are equal sets.

- The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.
- {1,3,3,5,5} is the same as the set
 {1,3,5} because they have the same elements.

Sets (8/24)

Empty Set

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset . The empty set can also be denoted by { }

Sets (9/24)

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by |S|.

Dr. Ahmed Alsayed- 0559596720

Sets (10/24)

Example1

- $S = \{a, b, c, d\}$ |S| = 4 $A = \{1, 2, 3, 7, 9\}$
- $\emptyset = \{ \}$

Dr. Ahmed Alsayed- 0559596720

Sets (10/24)

Example1

$$S = \{a, b, c, d\}$$

|S| = 4
$$A = \{1, 2, 3, 7, 9\}$$

|A| = 5

Sets (11/24)

Example2

$$S = \{a, b, c, d, \{2\}\}$$

 $|S| =$

$$A = \{1, 2, 3, \{2,3\}, 9\}$$
$$|A| =$$

 $\{\emptyset\} = \{\{ \}\}\$ $|\{\emptyset\}| =$

Dr. Ahmed Alsayed- 0559596720

Sets (11/24)

Example2

$$S = \{a, b, c, d, \{2\}\}$$

 $|S| = 5$

$$A = \{1, 2, 3, \{2,3\}, 9\}$$
$$|A| = 5$$

$$\{\emptyset\} = \{\{ \}\}\$$

 $|\{\emptyset\}| = 1$

Sets (12/24)

Infinite

A set is said to be **infinite** if it is not finite. The set of positive integers is infinite.

$Z^+ = \{1, 2, 3, \dots\}$

Dr. Ahmed Alsayed- 0559596720

Sets (13/24)

Subset

The set *A* is said to be a subset of *B* if and only if every element of *A* is also an element of *B*.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$$

Sets (13/24)

Subset

The set *A* is said to be a subset of *B* if and only if every element of *A* is also an element of *B*.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

 $(A \subseteq B) \equiv (B \supseteq A)$

 $A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$

Sets (13/24)

Subset

For every set S, (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Dr. Ahmed Alsayed- 0559596720

Sets (14/24)

Proper Subset

The set *A* is a subset of the set *B* but that $A \neq B$, we write $A \subset B$ and say that *A* is a **proper subset** of *B*.

$A \subset B \iff (\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A))$

Dr. Ahmed Alsayed- 0559596720

Sets (15/24)

Example

For each of the following sets, determine whether 3 is an element of that set.

{1,2,3,4} {{1}, {2}, {3}, {4}} {1,2, {1,3}}

Sets (16/24)

Venn Diagram

 $A = \{1, 2, 3, 4, 7\}$ $B = \{0, 3, 5, 7, 9\}$ $C = \{1, 2\}$

Dr. Ahmed Alsayed- 0559596720

Sets (17/24)

Venn Diagram

Dr. Ahmed Alsayed- 0559596720

Sets (18/24)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by P(S).

The number of elements in the power set is $2|^{S}|$

Dr. Ahmed Alsayed- 0559596720

Sets (18/24)

 $S = \{1, 2, 3\}$

 $P(S) = 2^{S}$

The set of all subsets.

If the set is S. The power set of S is denoted by P(S).

The number of elements in the power set is $2|^{S}|$

 $|P(S)| = 2^3 = 8$ elements

 $\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$

Sets (19/24)

Example1

What is the power set of the empty set?

Dr. Ahmed Alsayed- 0559596720

Sets (19/24)

Example1

What is the power set of the empty set?

$\mathcal{P}(\emptyset) = \{\emptyset\}.$

Dr. Ahmed Alsayed- 0559596720

Sets (20/24)

Example2

What is the power set of the set $\{\emptyset\}$?

Dr. Ahmed Alsayed- 0559596720

Sets (20/24)

Example2

What is the power set of the set $\{\emptyset\}$?

$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$

Dr. Ahmed Alsayed- 0559596720

Sets (21/24)

The ordered *n*-tuple

- The ordered *n*-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its *n*th element.
- In particular, ordered 2-tuples are called ordered pairs (e.g., the ordered pairs (a, b))

Sets (22/24)

Cartesian Products

Let *A* and *B* be sets.

- The Cartesian product of A and B, denoted by $A \times B$,
- is the set of all ordered pairs (a, b), where $a \in A$ and
- $b \in B$. Hence, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Cartesian Products - Example

Let $A = \{1,2\}$, and $B = \{a, b, c\}$ $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

$|A \times B| = |A| * |B| = 2 * 3 = 6$

Dr. Ahmed Alsayed- 0559596720

Sets (22/24)

Cartesian Products - Example

Let $A = \{1,2\}$, and $B = \{a, b, c\}$ $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

$$|A \times B| = |A| * |B| = 2 * 3 = 6$$

Dr. Ahmed Alsayed- 0559596720

The Cartesian product of more than two sets.

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered

n-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i for

 $i = 1, 2, \dots, n$. In other words,

{ $(a_1, a_2, \dots, A_n) \times | A_{i_2} \otimes A_{i_i} \text{ for } A_n i = 1, 2, \dots, n$ }.

Dr. Ahmed Alsayed- 0559596720

Example:

$A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}$, and $C = \{0, 1, 2\}$

$A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$

Dr. Ahmed Alsayed- 0559596720

Set Operations (1/7)

Union

Let A and B be sets. The **union** of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Dr. Ahmed Alsayed- 0559596720

Set Operations (1/7)

Union

Let A and B be sets. The **union** of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both.

Set Operations (1/7)

Union

Let A and B be sets. The **union** of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both.

The union of the sets {1, 3, 5} and {1, 2, 3}

is the set {1, 2, 3, 5}

Set Operations (2/7)

intersection

Intersection

Let *A* and *B* be sets. The intersection of the sets A and

B, denoted by $A \cap B$, is the set that contains those elements that $A \cap B = \{x \mid x \in A \land x \in B\}$

are in both *A* and *B*.

Dr. Ahmed Alsayed- 0559596720

Set Operations (2/7)

intersection

Intersection

Dr. Ahmed Alsayed- 0559596720

Set Operations (2/7)

intersection

Intersection

Let *A* and *B* be sets. The intersection of the sets A and

B, denoted by $A \cap B$, is the set that contains those elements that The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ are in both A and B. is the set $\{1, 3\}$

Dr. Ahmed Alsayed- 0559596720

Set Operations (3/7)

Disjoint

Two sets are called disjoint if their intersection is the empty set.

$A \cap B = \emptyset$

Dr. Ahmed Alsayed- 0559596720

Set Operations (4/7)

Difference

Let *A* and *B* be sets. The difference of *A* and *B*, denoted by A - B, is the set containing those

elements that are in A but not in B.

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

Dr. Ahmed Alsayed- 0559596720

Set Operations (4/7)

Difference

Let *A* and *B* be sets. The difference of *A* and *B*, denoted by A - B, is the set containing those

elements that are in *A* but not in *B*.

$$A = \{1,3,5\}, \qquad B = \{1,2,3\}$$

 $A - B = \{5\}$

Dr. Ahmed Alsayed- 0559596720

Set Operations (4/7)

Difference

Dr. Ahmed Alsayed- 0559596720

Set Operations (5/7)

Complement

Let *U* be the universal set.

The complement of the set A , denoted by A^T_D

An element x belongs to U if and only if $x \notin A$.

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

Dr. Ahmed Alsayed- 0559596720

Set Operations (5/7)

Complement

Let *U* be the universal set.

The complement of the set A , denoted by $A^{T_{D}}$

An element x belongs to U if and only if $x \notin A$.

$$U = \{1, 2, 3, 4, 5\}, \qquad A = \{1, 3\}$$

 $A^{T}_{2} = \{2, 4, 5\}$

Dr. Ahmed Alsayed- 0559596720

Set Operations (5/7)

Complement

Dr. Ahmed Alsayed- 0559596720

Set Operations (6/7)

Generalized Unions

We use the notation

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \ldots, A_n .

Dr. Ahmed Alsayed- 0559596720

Set Operations (6/7)

Generalized Unions

 $A \cup B \cup C$ is shaded.

Dr. Ahmed Alsayed- 0559596720

Set Operations (7/7)

Generalized Intersections

We use the notation

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

to denote the intersection of the sets A_1, A_2, \ldots, A_n .

Dr. Ahmed Alsayed- 0559596720

Set Operations (7/7)

Generalized Intersections

Dr. Ahmed Alsayed- 0559596720

Set Identities (1/8)

TABLE Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws

Dr. Ahmed Alsayed- 0559596720

Set Identities (2/8)

TABLE Set Identities.	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$ $\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Dr. Ahmed Alsayed- 0559596720

Set Identities (3/8)

Example1

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Dr. Ahmed Alsayed- 0559596720

Example1 – Answer

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

First, we will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

Set Identities (5/8)

First, we will show that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

 $x \in \overline{A \cap B}$ $x \notin A \cap B$ $\neg((x \in A) \land (x \in B))$ $\neg(x \in A) \lor \neg(x \in B)$ $x \notin A \lor x \notin B$ $x \in \overline{A} \lor x \in \overline{B}$ $x \in \overline{A} \cup \overline{B}$

by assumption defn. of complement defn. of intersection 1st De Morgan Law for Prop Logic defn. of negation defn. of complement defn. of union

Set Identities (6/8)

Next, we will show that $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

 $x \in \overline{A} \cup \overline{B}$ $(x \in \overline{A}) \lor (x \in \overline{B})$ $(x \notin A) \lor (x \notin B)$ $\neg (x \in A) \lor \neg (x \in B)$ $\neg ((x \in A) \land (x \in B))$ $\neg (x \in A \cap B)$ $x \in \overline{A \cap B}$

by assumption defn. of union defn. of complement defn. of negation by 1st De Morgan Law for Prop Logic defn. of intersection defn. of complement

Set Identities (7/8)

Example2

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Dr. Ahmed Alsayed- 0559596720

Set Identities (8/8)

Example2 – Answer

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$
by definition of complement $= \{x \mid \neg(x \in (A \cap B))\}$ by definition of does not belong symbol $= \{x \mid \neg(x \in A \land x \in B)\}$ by definition of intersection $= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$ by the first De Morgan law for logical equivalences $= \{x \mid x \notin A \lor x \notin B\}$ by definition of does not belong symbol $= \{x \mid x \notin A \lor x \notin B\}$ by definition of complement $= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$ by definition of complement $= \{x \mid x \in \overline{A} \lor \overline{B}\}$ by definition of complement $= \{x \mid x \in \overline{A} \cup \overline{B}\}$ by definition of union $= \overline{A} \cup \overline{B}$ by meaning of set builder notation

Functions (1/21)

Function

Let *A* and *B* be nonempty sets. A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \to B$.

Functions (2/21)

Function

Assignment of grades in a discrete mathematics class.

Dr. Ahmed Alsayed- 0559596720

Functions (3/21)

The Function $f: A \rightarrow B$

The function *f* maps *A* to *B*.

Dr. Ahmed Alsayed- 0559596720

Functions (3/21)

The Function $f: A \rightarrow B$

The function f maps A to B.

The range, or image, of fis the set of all images of elements of A.

Functions (4/21)

The Function $f: A \rightarrow B$

 $Domain = \{a, b, c, d, e\}$

Co-Domain = $\{1, 2, 3, 4, 5, 6, 7\}$

Range = $\{1,3,4,5,7\}$

Definition

Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbf{R} defined for all $x \in A$ by $(f_1 + f_2)(x) = f_1(x) + f_2(x),$ $(f_1 f_2)(x) = f_1(x)f_2(x).$

Functions (6/21)

Example

Let f_1 and f_2 be functions from **R** to **R** such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and f_1f_2 ?

$$(f_1+f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x,$$

$$(f_1f_2)(x) = f_1(x)f_2(x) = x^2(x - x^2) = x^3 - x^4.$$

Dr. Ahmed Alsayed- 0559596720

Functions (7/21)

Definition

- Let *f* be a function from *A* to *B* and let *S* be a subset of *A*. The image of *S* under the function *f* is the subset of *B* that consists of the images of the elements of *S*.
- We denote the image of S by f(S), so

$$f(S) = \{ t \mid \exists s \in S (t = f(s)) \}.$$

or shortly $\{ f(s) \mid s \in S \}.$

Let $A = \{a, b, c, d, e\}$ and $B = \{1, 2, 3, 4\}$ with f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1.

 $S = \{b, c, d\} \subseteq A$

The image of the subset $S = \{b, c, d\}$ is the set $f(S) = \{1, 4\}$

One-to-One function (injective)

A function *f* is said to be **one-to-one**, or **injective**, if and only if f(a) = f(b) implies that a = b for all *a* and *b* in the domain of *f*.

One-to-One function (injective)

$$f(a) = 1$$

 $f(b) = 3$
 $f(c) = 7$
 $f(d) = 4$

$$f(e)=5$$

Dr. Ahmed Alsayed- 0559596720

NOT *One-to-One* function (Not injective)

onto function (surjective)

A function *f* from *A* to *B* is called **onto**, or **surjective**, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Dr. Ahmed Alsayed- 0559596720

onto function (surjective)

Dr. Ahmed Alsayed- 0559596720

Functions (10/21) NOT *onto* function (Not surjective)

Dr. Ahmed Alsayed- 0559596720

Functions (11/21) One-to-one correspondence (bijection)

The function *f* is a **one-to-one correspondence**, or a **bijection**, if it is both one-to-one and onto.

Dr. Ahmed Alsayed- 0559596720

Functions (11/21) **One-to-one correspondence** $|\mathbf{A}| = |\mathbf{B}|$ (bijection) f(a) = 1a f(b) = 3f(c) = 55 f(d) = 2e Co-Domain = $\{1, 2, 3, 4, 5\}$ f(e) = 4Range = $\{1, 2, 3, 4, 5\}$ R

Dr. Ahmed Alsayed- 0559596720

NOT One-to-one correspondence (Not

$$f(a) = 1$$

$$f(b) = 3$$
 NOT one-to-one

$$f(c) = 5$$
 NOT onto

$$f(d) = 1$$

$$f(e) = 4$$
Co-Domain = {1,2,3,4,5}
Range = {1,3,4,5}

Dr. Ahmed Alsayed- 0559596720

Functions (11/21) NOT *One-to-one correspondence* (Not

f(a) = 1	
f(b) = 2	Onto
f(c) = 3	NOT one-to-one
f(d) = 1	
f(e) = 4	Co-Domain = $\{1, 2, 3, 4\}$

Range = $\{1, 2, 3, 4\}$

NOT *One-to-one correspondence* (Not

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

• 1 а 2 3 B A

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

B

$a \bullet$ $b \bullet$ $\bullet 1$ $c \bullet$ $\bullet 2$ $d \bullet$ $\bullet 3$

A

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

Dr. Ahmed Alsayed- 0559596720

Examples

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

Dr. Ahmed Alsayed- 0559596720

Functions (12/21)

a 2 h 3 d 4 B A

Dr. Ahmed Alsayed- 0559596720

Examples

Dr. Ahmed Alsayed- 0559596720

Examples

Dr. Ahmed Alsayed- 0559596720

Examples

NOT a function fronfrom *A* to *B*

Dr. Ahmed Alsayed- 0559596720

Examples Functions (13/21)

xDetermine whether the function(f) = x + 1 from the set of integers

to the set of integers is one-to-one.

Dr. Ahmed Alsayed- 0559596720

Examples (Answer)

x Determine whether the function(f) = x + 1 from the set of integers to the set of integers is one-to-one.

Functions (13/21)

$$() = b + 1b f \quad and = a + 1af$$

(b) =
$$fa$$
 (if f is one(-t))-one(xf) and a equal b then).
 $a + 1 = b + 1$
 $a = b$
is (n)-to-one x . f

Dr. Ahmed Alsayed- 0559596720

Examples

Determine whether the function $f(x) = x^2$ from the set of integers to

the set of integers is one-to-one.

Dr. Ahmed Alsayed- 0559596720

Examples (Answer)

Determine whether the function $f(x) = x^2$ from the set of integers to

the set of integers is one-to-one.

$$f(a) = a^2$$
 and $f(b) = b^2$

f(x) is one-to-one (if f(a) = f(b) and a equal b then).

$$a^2 = b^2$$
$$\pm a = \pm k$$

a may be not equal b

 $\therefore f(x)$ is NOT one-to-one

Dr. Ahmed Alsayed- 0559596720

Inverse Functions

Let *f* be a *one-to-one correspondence* from the set *A* to the set *B*. The **inverse** function of *f* is the function that assigns to an element *b* belonging to *B* the unique element *a* in *A* such that f(a) = b. The inverse function of *f* is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Inverse Functions

Dr. Ahmed Alsayed- 0559596720

Invertible

A one-to-one correspondence is called **invertible** because we can define an inverse of this function. A function is **not invertible** if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Invertible – Example

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Dr. Ahmed Alsayed- 0559596720

Invertible – Example

Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Answer:

The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so

$$) = c, f^{-1}(2) = a, and f^{-1}(3) = b.$$

Example 18/21 Functions (18/21) Composition of the Functions *f* and *g*

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(=)fg(g)(=)fg(g)(=))$

Dr. Ahmed Alsayed- 0559596720

Example 18/21 Functions (18/21) Composition of the Functions *f* and *g*

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)(=)fg(g)(=)fg(g)(=))$

Composition Example 1

Let *g* be the function from the set {*a*, *b*, *c*} to itself such that g(a) = b, g(b) = c, and g(c) = a. Let *f* be the function from the set {*a*, *b*, *c*} to the set {1,2,3} such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of *f* and *g*, and what is the composition of *g* and *f*?

Composition Example 1

Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b,

g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to

the set { 1, 2, 3 } such that f(a) = 3, f(b) = 2, and f(c) = 1.

Answer:

- 1) The composition of f and g (i.e., $(f \circ g)$)
- $(f \circ g)(a) = 2$, $(f \circ g)(b) = 1$, $(f \circ g)(c) = 3$

2) The composition of g and f (i.e., $(g \circ f)$) cannot be defined because the range of f is NOT a subset of the domain of g.

Composition Example 2

Let *f* and *g* be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of *f* and *g*? What is the composition of *g* and *f*?

Dr. Ahmed Alsayed- 0559596720

Functions (20/21)

Composition Example 2

Let *f* and *g* be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

Answer:

1) The composition of f and g (i.e., $(f \circ g)$)

$$(f \circ g)(x) = f(g(x)) = 2(3x + 2) + 3 = 6x + 7$$

2) The composition of g and f (i.e.,
$$(g \circ f)$$
)
 $f(x) = g(f(x)) = 3(2x + 3) + 2 = 6x + 11$

Dr. Ahmed Alsayed- 0559596720

Functions (21/21) The Graphs of Functions

(-1,1) •

•(-3,9) Let f be a function from A to B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } b \in B\}.$ (3,9) •(-2,4) (2,4) (2,4)

The graph of $f(x) = x^2$ from Z to Z.

(0,0)

Dr. Ahmed Alsayed- 0559596720

King Saud University- College of Science

• (1,1)

Some Important Functions (1/4)

Floor function $y = \lfloor x \rfloor$

Dr. Ahmed Alsayed- 0559596720

Some Important Functions (2/4)

Ceiling function y = [x]

Dr. Ahmed Alsayed- 0559596720

Some Important Functions (3/4)

Useful Properties

$$\lfloor -x \rfloor = -\lceil x \rceil$$
$$\lceil -x \rceil = -\lfloor x \rfloor$$

$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Some Important Functions (4/4)

Examples

|0.5| =[0.5] =[3] = [-0.5] =[-1.2] =|1.1| =0.3 + 2 =**№**+[0.5]] =

Some Important Functions (4/4)

Examples-Answer

|0.5| = 0[0.5] = 1[3] = 3|-0.5| = -[0.5] = -1[-1.2] = -1|1.1| = 1|0.3 + 2| = 2[+ [0.5]] = 3

Definition

- A sequence is a set of things (usually numbers) that are in order.
 - For example, 1, 2, 3, 5, 8 is a sequence with five terms and 1, 3, 9, 27, 81, ..., 30, ... is an infinite sequence.
- We use the notation a_n to denote the image of the integer *n*. We call a_n a term of the sequence.
- We use the notation $\{a_n\}$ to describe the sequence.

 $= a_1, a_2, a_3, \dots$

Example

• Consider the sequence $\{a_n\}$, where 1 $a_n = \frac{1}{n}$

The list of the terms of this sequence, beginning with a_1 , namely,

$$a_1, a_2, a_3, a_4, \dots,$$

Starts with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Dr. Ahmed Alsayed- 0559596720

Sequences (3/13)

Geometric

A geometric progression is a sequence of the form

 $a, ar, ar^2, ..., ar^n, ...$

where the *initial term a* and

the *common ratio r* are real numbers.


```
2, 10, 50, 250, ...
```

Dr. Ahmed Alsayed- 0559596720

Sequences (4/13)

Geometric – Example1

 $1, -1, 1, -1, 1, \ldots;$

${ar^n}, n = 0,1,2,...$

a = 1r = -1

Dr. Ahmed Alsayed- 0559596720

Sequences (5/13)

Geometric – Example2

2, 10, 50, 250, 1250, ...;

$\{ar^n\}, \quad n = 0, 1, 2, \dots$

a = 2r = 5

Dr. Ahmed Alsayed- 0559596720

Sequences (6/13)

Geometric – Example3

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots$$

${ar^n}, n = 0,1,2,...$

a = 6r = 1/3

Dr. Ahmed Alsayed- 0559596720

Sequences (7/13)

Geometric – Example4

Find $a, r? \{3 * 4^n\}, n = 0, 1, 2, ...$

$$\{ar^n\}, \quad n = 0, 1, 2, \dots$$

a = 3r = 4

Geometric – Example5

Find a, r? {3 * 4ⁿ}, n = 1, 2, 3, ...

a = 12r = 4

Dr. Ahmed Alsayed- 0559596720

Sequences (9/13)

Arithmetic

An arithmetic progression is a sequence of the form

 $a, a + d, a + 2d, \dots, a + nd, \dots$

where the *initial term a* and the *common difference d* are real numbers.

Dr. Ahmed Alsayed- 0559596720

Sequences (10/13)

Arithmetic – Example1

- $-1, 3, 7, 11, \ldots,$
- $\{a + nd\}, \quad n = 0, 1, 2, ...$
- a = -1d = 4

Dr. Ahmed Alsayed- 0559596720

Sequences (11/13)

Arithmetic – Example2

$$7, 4, 1, -2, \ldots$$

$$\{a + nd\}, \qquad n = 0, 1, 2, \dots$$

$$a = 7$$

 $d = -3$

Dr. Ahmed Alsayed- 0559596720

Sequences (12/13)

Notes:

- Are terms obtained from previous terms by adding the same amount or an amount that depends on the position in the sequence?
- Are terms obtained from previous terms by multiplying by a particular amount?
- Are terms obtained by combining previous terms in a certain way?
- Are there cycles among the terms?

Sequences (13/13)

Fibonacci Sequence

The *Fibonacci sequence*, $f_0, f_1, f_2, ...,$ is defined by the initial conditions $f_0 = 0, f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for
$$n = 2, 3, 4, \ldots$$
.

Dr. Ahmed Alsayed- 0559596720

to

Next, we introduce **summation notation**. We begin by describing the notation used to express the sum of the terms

$$a_m, a_{m+1}, \ldots, a_n$$

from the sequence $\{a_n\}$. We use the notation

$$\sum_{j=m}^{n} a_{j}, \qquad \sum_{j=m}^{n} a_{j}, \qquad \text{or} \qquad \sum_{m \le j \le n} a_{j}$$

represent

$$a_{m} + a_{m+1} + \dots + a_{n}.$$
or

$$\sum_{m \le j \le n} a_{j}$$

(read as the sum from $j = m$ to $j = n$ of a_{j})
Here, the variable j is called the **index of summation**

Summations (1/8)

$$\sum_{j=m}^{n} a_{j} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}$$

Here, the index of summation runs through all integers starting with its **lower limit** *m* and ending with its **upper limit** *n*. A large uppercase Greek letter sigma, \sum , is used to denote summation.

Summations (2/8)

Example 1

Express the sum of the first 100 terms of the sequence $\{a_n\}$,

where $a_n = 1/n$ for n = 1, 2, 3, ...

Dr. Ahmed Alsayed- 0559596720

Summations (3/8)

Example 1

Express the sum of the first 100 terms of the sequence $\{a_n\}$,

where $a_n = 1/n$ for n = 1, 2, 3, ...

Answer

100

Dr. Ahmed Alsayed- 0559596720

Summations (4/8)

Example 2

What is the value of $\sum_{j=1}^{5} j^2$?

Dr. Ahmed Alsayed- 0559596720

Summations (4/8)

Example 2

What is the value of $\sum_{i=1}^{5} j^2$?

Answer

Dr. Ahmed Alsayed- 0559596720

Summations (5/8)

Example 3

What is the value of $\sum_{s \in \{0,2,4\}} s$?

Dr. Ahmed Alsayed- 0559596720

Summations (5/8)

Example 3

What is the value of $\sum_{s \in \{0,2,4\}} s$?

$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6.$

Dr. Ahmed Alsayed- 0559596720

Example 4

Summations (6/8)

Suppose we have the sum

but want the index of summation to run between 0 and 4

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2$$

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55.

Dr. Ahmed Alsayed- 0559596720

Double Summation Find

3 $\sum \sum ij$ $\overline{i=1}$ $\overline{j=1}$

Dr. Ahmed Alsayed- 0559596720

Summations (8/8)

Double Summation

Matrices (1/14)

Definition:

A *matrix* is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called *square*.

Dr. Ahmed Alsayed- 0559596720

Matrices (1/14)

Definition:

A *matrix* is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called *square*.

The matrix
$$\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}$$
 is a 3 × 2 matrix.

$m \times n$ matrix

Let m and n be positive integers and let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & & & & \\ & & & & & \\ & & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Dr. Ahmed Alsayed- 0559596720

Matrices (3/14)

$m \times n$ matrix

The (2, 1)th *element* or *entry* of **A** is the element a_{21} , means 2^{nd} row and 1^{st} column of **A**.

Dr. Ahmed Alsayed- 0559596720

Matrices (4/14)

Matrix Arithmetic (Sum.)

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ matrices. The sum of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} + \mathbf{B}$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i, j)th element. In other words, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$.

DEALTHER A HARRA 0559596720

KBS102dDiscreterMethematicsence

Matrices (4/14)

Matrix Arithmetic (Sum.)

Note: matrices of *different sizes* can **not** be added.

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ matrices. The sum of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} + \mathbf{B}$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i, j)th element. In other words, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$.

Matrices (5/14)

Matrix Arithmetic (Product/Multiplication)

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & c_{ij} & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

$$Amk \qquad Bkn \qquad AB = Cmn$$

Dr. Ahmed Alsayed- 0559596720

Matrices (5/14)

Matrix Arithmetic (Product/Multiplication)

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & c_{ij} & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

$$Amk \qquad Bmn \qquad AB = Cmn$$

Dr. Ahmed Alsayed- 0559596720

Matrices (6/14)

Example1 (1/2)

$$\mathbf{A}_{3\times 3} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & -1 \end{bmatrix}_{3\times 3} \qquad \qquad \mathbf{M}_{3\times 2} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 1 \end{bmatrix}_{3\times 2}$$

$\mathbf{A}_{3\times 3} \times \mathbf{M}_{3\times 2} = \mathbf{B}_{3\times 2}$

Matrices (6/14)

Example1 (2/2)

$$\mathbf{A}_{3\times 3} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & -1 \end{bmatrix}_{3\times 3} \qquad \qquad \mathbf{M}_{3\times 2} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 1 \end{bmatrix}_{3\times 2}$$

$$A_{3\times3} \times M_{3\times2} = B_{3\times2}$$

$$a_{11} = 6$$

$$= (1 \times 1 + 1 \times 3 + 2 \times 1)$$

$$\begin{bmatrix} 1 & 2 \\ -1 & -2 \\ -1 & -2 \\ -1 & -2 \\ -1 & -2 \\ -1 & -2 \\ -1 & -1 \\ -1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ -1 & -2 \\ -1 & -2 \\ -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ -1 \\ -1 & -2 \\ -2 \end{bmatrix}$$

Dr. Ahmed Alsayed- 0559596720

Matrices (6/14)

Example1 (2/2)

$$\mathbf{A}_{3\times3} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & -1 \end{bmatrix}_{3\times3} \qquad \mathbf{M}_{3\times2} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 1 \end{bmatrix}_{3\times2}$$

Dr. Ahmed Alsayed- 0559596720

Matrices (7/14)

Example2 (1/2) Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Does AB = BA?

Dr. Ahmed Alsayed- 0559596720

Example2 (2/2) Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Solution: We find that

$$\mathbf{AB} = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{BA} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$$

Hence,
$$AB \neq BA$$
.

Dr. Ahmed Alsayed- 0559596720

.

Matrices (8/14)

Identity matrix (I_n)

The *identity matrix* of order *n* is the $n \times n$ matrix $\mathbf{I}_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

$$\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3}$$

A is an
$$m \times n$$
 matrix, we have
 $AI_n = I_m A = A.$

Dr. Ahmed Alsayed- 0559596720

Matrices (9/14)

Powers of square matrices (A^r)

When **A** is an $n \times n$ matrix, we have $\mathbf{A}^0 = \mathbf{I}_n, \qquad \mathbf{A}^r = \underbrace{\mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{n}.$

r times

Dr. Ahmed Alsayed- 0559596720

Matrices (10/14)

Transpose of A (A^t)

Interchanging the rows and columns of **A**

Dr. Ahmed Alsayed- 0559596720

Matrices (10/14)

Transpose of A (A^t)

Interchanging the rows and columns of **A**

Dr. Ahmed Alsayed- 0559596720

Matrices (11/14)

Symmetric

A square matrix **A** is called *symmetric* if $\mathbf{A} = \mathbf{A}^t$

Dr. Ahmed Alsayed- 0559596720

Symmetric

A square matrix **A** is called *symmetric* if $\mathbf{A} = \mathbf{A}^t$

Dr. Ahmed Alsayed- 0559596720

Matrices (12/14)

Zero–One Matrices

A matrix all of whose entries are either **0** or **1**

$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$

Dr. Ahmed Alsayed- 0559596720

join and *meet* (Zero–One Matrices)

$$mee \atop t \qquad b_1 \wedge b_2 = \begin{cases} 1 & \text{if } b_1 = b_2 = 1 \\ 0 & \text{otherwise,} \end{cases}$$

$$b_1 \vee b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

$$join$$

Dr. Ahmed Alsayed- 0559596720

Matrices (14/14)

Example (1/3)

Find the join and meet of the zero–one matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Dr. Ahmed Alsayed- 0559596720

Matrices (14/14)

Example (2/3)

Find the join and meet of the zero–one matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Solution: We find that the join of **A** and **B** is

$$\mathbf{A} \lor \mathbf{B} = \begin{bmatrix} 1 \lor 0 & 0 \lor 1 & 1 \lor 0 \\ 0 \lor 1 & 1 \lor 1 & 0 \lor 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Matrices (14/14)

Example (3/3)

Find the join and meet of the zero–one matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Solution:

The meet of **A** and **B** is

$$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Dr. Ahmed Alsayed- 0559596720

