Discrete Mathematics Chapter 03 Sets

$$
.009097 \mathrm{VF}
$$

$$
\begin{aligned}
& \text { إعداد وتقديم } \\
& \text { دكتور أحمد السيد } \\
& \text { كلية العلوم- قسم الرياضيات -جامعة الملك سعود } \\
& \text { aalsayedmm@gmail.com }
\end{aligned}
$$

 $2+30$

النمlك נسعوح
King Saud University
استراتيجيات التعلم

Dr. Ahmed Alsayed- 0559596720 King Saud University- College of Science

1- Course Syllabus (Credit Hours: 4 (3+2))

No	List of Topics
1	Introduction to Number Systems: - Binary System (Binary to Decimal Conversion - Decimal to Binary Conversion - Arithmetic: addition, subtraction, multiplication) - Octal Number System (Conversions and Arithmetic) - Hexadecimal Number System (Conversions and Arithmetic)
2	Logic: - Proposition calculus and connectives - Truth tables - Propositional Equivalence.
3	Sets: - Set operations
4	Boolean Algebra: - Boolean Functions - Representation Boolean Functions - Logic Gates - Minimization of Circuit
5	Basic Concepts of Graph Theory: - Graph Terminology and Special Types of Graphs - Connectivity

King Saud University

College of Applied Studies \& Community Service Department of Computer Science \& Engineering

ا النملكسعود King Saud University

	خطة تدريس المقرر (مقتّ) Course plan
رمز ورقم المقرر : 153 ريض Math. 153	مـقر: : الرياضيات الغددة Discrete Mathematics

Course Objectives

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms
- of mathematical thought.
- Acquire logic and proof as the basics for abstract
- thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.

Chapter 2: Sets

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

Sets (1/24)

A set is an unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain its elements.
$S=\{a, b, c, d\}$
We write $a \in S$ to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S.

Sets (3/24)

The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.

The set of positive integers less than 100 can be denoted by $\{1,2,3, \ldots, 99\}$.
ellipses (...)

Another way to describe a set is to use set builder notation.

The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.
$O=\{x \mid x$ is an odd positive integer less than 10$\}$,
$=\left\{x \in \mathbf{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$.

Sets (5/24)
$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of all integers
$\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers
$\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$,
the set of all rational numbers
\mathbf{R}, the set of all real numbers
\mathbf{R}^{+}, the set of all positive real numbers
\mathbf{C}, the set of all complex numbers.

Sets (6/24)

Interval Notation

Closed interval $[a, b]$
Open interval (a, b)
$[a, b]=\{x \mid a \leq x \leq b\}$
$[a, b)=\{x \mid a \leq x<b\}$
$(a, b]=\{x \mid a<x \leq b\}$
$\ldots(g, b)=\{x \mid a<x<b\}$

If A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A=B$, if A and B are equal sets.

- The sets $\{1,3,5\}$ and $\{3,5,1\}$ are equal, because they have the same elements.
- $\{1,3,3,5,5,5\}$ is the same as the set $\{1,3,5\}$ because they have the same elements.

Sets (8/24)

Empty Set

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset.

The empty set can also be denoted by \{ \}

Sets (9/24)

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by $|S|$.

Sets (10/24)

Example1

$$
\begin{aligned}
& S=\{a, b, c, d\} \\
& |S|=4 \\
& A=\{1,2,3,7,9\} \\
& \emptyset=\{ \}
\end{aligned}
$$

Sets (10/24)

Example1

$$
\begin{aligned}
& S=\{a, b, c, d\} \\
& |S|=4 \\
& A=\{1,2,3,7,9\} \\
& |A|=5 \\
& \emptyset=\{ \} \\
& |\varnothing|=0
\end{aligned}
$$

Sets (11/24)

Example2

$$
\begin{aligned}
& S=\{a, b, c, d,\{2\}\} \\
& |S|= \\
& A=\{1,2,3,\{2,3\}, 9\} \\
& |A|=
\end{aligned}
$$

$$
\{\varnothing\}=\{\{ \}\}
$$

$$
|\{\varnothing\}|=
$$

Sets (11/24)

Example2

$$
\begin{aligned}
& S=\{a, b, c, d,\{2\}\} \\
& |S|=5 \\
& A=\{1,2,3,\{2,3\}, 9\} \\
& |A|=5
\end{aligned}
$$

$\{\varnothing\}=\{\{ \}\}$
$|\{\varnothing\}|=1$

Sets (12/24)

Infinite

A set is said to be infinite if it is not finite.
The set of positive integers is infinite.

$$
Z^{+}=\{1,2,3, \ldots\}
$$

Sets (13/24)

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

Sets (13/24)

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
(A \subseteq B) \equiv(B \supseteq A)
$$

$$
A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

Sets (13/24)

Subset

For every set S,
 (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Sets (14/24)

Proper Subset

The set A is a subset of the set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B.
$A \subset B \leftrightarrow(\forall x(x \in A \rightarrow x \in B) \mathrm{A} \exists x(x \in B \mathrm{~A} x \notin A))$

Sets (15/24)

Example

For each of the following sets, determine whether 3 is an element of that set.
$\{1,2,3,4\}$
$\{\{1\},\{2\},\{3\},\{4\}\}$
$\{1,2,\{1,3\}\}$

Sets (16/24)

Venn Diagram

$$
\begin{aligned}
& A=\{1,2,3,4,7\} \\
& B=\{0,3,5,7,9\} \\
& C=\{1,2\}
\end{aligned}
$$

Sets (17/24)

Venn Diagram

Sets (18/24)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by $P(S)$.
The number of elements in the power set is 2β |

Sets (18/24)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by $P(S)$.
The number of elements in the power set is 2β |

$$
\begin{aligned}
& S=\{1,2,3\} \\
& P(S)=2^{S} \\
& -|P(S)|=\mathbf{2}^{3}=\mathbf{8} \text { elements } \\
& \text { So },\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
\end{aligned}
$$

Sets (19/24)

Example1

What is the power set of the empty set?

Sets (19/24)

Example1

What is the power set of the empty set?

$\mathcal{P}(\emptyset)=\{\emptyset\}$.

Sets (20/24)

Example2

What is the power set of the set $\{\emptyset\}$?

Sets (20/24)

Example2

What is the power set of the set $\{\emptyset\}$?

$$
\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\} .
$$

Sets (21/24)

The ordered n-tuple

The ordered n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its nth element.

In particular, ordered 2 -tuples are called ordered pairs (e.g., the ordered pairs $(a, b))$

Sets (22/24)

Cartesian Products

Let A and B be sets.
The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and
$b \in B$. Hence, $A \times B=\{(a, b) \mid a \in A$ A $b \in B\}$.

Cartesian Products - Example

Let $A=\{1,2\}$, and $B=\{a, b, c\}$
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.
$|A \times B|=|A| *|B|=2 * 3=6$

Sets (22/24)

Cartesian Products - Example

Let $A=\{1,2\}$, and $B=\{a, b, c\}$
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.

$$
|A \times B|=|A| *|B|=2 * 3=6
$$

Find $B \times A$?

The Cartesian product of more than two sets.

The Cartesian product of the sets A_{1}, A_{2}, \ldots,
A_{n}, denoted by $A_{1} \times A_{2} \times \cdots \times A_{n}$, is the set of ordered
n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for
$i=1,2, \ldots, n$. In other words,

Example:

$$
A \times B \times C, \text { where } A=\{0,1\}, B=\{1,2\}, \text { and } C=\{0,1,2\}
$$

$$
\begin{aligned}
A \times B \times C= & \{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2), \\
& (1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\} .
\end{aligned}
$$

Set Operations (1/7)

Union

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Set Operations (1/7)

Union

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

$A \cup B$ is shaded.

Set Operations (1/7)

Union

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

The union of the sets $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{1,2,3,5\}$

Set Operations (2/7)

intersection

Intersection
Let A and B be sets. The intersection of the sets A and
B, denoted by $A \cap B$, is the set that contains those elements that

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

are in both A and B.

Set Operations (2/7)

intersection

Intersection
Let A and B be sets. The intersection of the sets A and

Set Operations (2/7)

intersection

Intersection
Let A and B be sets. The intersection of the sets A and
The intersection of the sets $\{1,3,5\}$ and and $\{1,2,3\}$
is the are in both A and B.
is the set $\{1,3\}$

Set Operations (3/7)

Disjoint

Two sets are called disjoint if their intersection is the empty set.

$$
A \cap B=\emptyset
$$

Set Operations (4/7)

Difference

Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

Set Operations (4/7)

Difference

Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B.

$$
\begin{gathered}
A=\{1,3,5\}, \quad B=\{1,2,3\} \\
A-B=\{5\}
\end{gathered}
$$

Set Operations (4/7)

Difference

$A-B$ is shaded.

Set Operations (5/7)

Complement

Let U be the universal set.
The complement of the set A, denoted by $A \square$
An element x belongs to U if and only if $x \notin A$.

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

Set Operations (5/7)

Complement

Let U be the universal set.
The complement of the set A, denoted by A Ђ
An element x belongs to U if and only if $x \notin A$.

$$
\begin{gathered}
U=\{1,2,3,4,5\}, \quad A=\{1,3\} \\
A ந=\{\quad 2,4,5
\end{gathered}
$$

Set Operations (5/7)

Complement

\bar{A} is shaded.

Set Operations (6/7)

Generalized Unions

We use the notation

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

to denote the union of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

Set Operations (6/7)

Generalized Unions

$A \cup B \cup C$ is shaded.

Generalized Intersections

We use the notation

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

to denote the intersection of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

Set Operations (7/7)

Generalized Intersections

Set Identities (1/8)

TABLE Set Identities.	
Identity	Name
$A \cap U=A$	Identity laws
$A \cup \emptyset=A$	Domination laws
$A \cup U=U$	
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	

Set Identities (2/8)

TABLE Set Identities.

$A \cup(B \cup C)=(A \cup B) \cup C$	Associative laws
$A \cap(B \cap C)=(A \cap B) \cap C$	
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	Distributive laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	De Morgan's laws
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	
$A \cup(A \cap B)=A$	Absorption laws
$A \cap(A \cup B)=A$	Complement laws
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\emptyset$	

Set Identities (3/8)

Example1

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Set Identities (4/8)

Example1 - Answer

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
First, we will show that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.
Next, we will show that $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$.

Set Identities (5/8)

First, we will show that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& x \notin A \vee x \notin B \\
& x \in \bar{A} \vee x \in \bar{B} \\
& x \in \bar{A} \cup \bar{B}
\end{aligned}
$$

by assumption
defn. of complement
defn. of intersection
1st De Morgan Law for Prop Logic
defn. of negation
defn. of complement
defn. of union

Set Identities (6/8)

Next, we will show that $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$.

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A \cap B) \\
& x \in \overline{A \cap B}
\end{aligned}
$$

by assumption
defn. of union
defn. of complement
defn. of negation
by 1st De Morgan Law for Prop Logic
defn. of intersection
defn. of complement

Set Identities (7/8)

Example2

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Set Identities (8/8)

Example2 - Answer

Use set builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
$\overline{A \cap B}=\{x \mid x \notin A \cap B\}$ $=\{x \mid \neg(x \in(A \cap B))\}$
$=\{x \mid \neg(x \in A \wedge x \in B)\}$
$=\{x \mid \neg(x \in A) \vee \neg(x \in B)\}$
$=\{x \mid x \notin A \vee x \notin B\}$
$=\{x \mid x \in \bar{A} \vee x \in \bar{B}\}$
$=\{x \mid x \in \bar{A} \cup \bar{B}\}$
$=\bar{A} \cup \bar{B}$
by definition of complement
by definition of does not belong symbol
by definition of intersection
by the first De Morgan law for logical equivalences
by definition of does not belong symbol
by definition of complement
by definition of union
by meaning of set builder notation

Functions (1/21)

Function

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \rightarrow B$.

Functions (2/21)

Function

Assignment of grades in a discrete mathematics class.

Functions (3/21)

The Function $f: A \rightarrow B$

The function f maps \boldsymbol{A} to B.

The Function $f: A \rightarrow B$

Domain: A

Co-Domain: B
$f(a)=b$
b is the image of a a is a preimage of b

The range, or image, of f

The function f maps A to B.

xisthe set of all images of

Functions (4/21)

The Function $f: A \rightarrow B$

Domain $=\{a, b, c, d, e\}$
Co-Domain $=\{1,2,3,4,5,6,7\}$
Range $=\{1,3,4,5,7\}$

Functions (5/21)

Definition

Let f_{1} and f_{2} be functions from A to \mathbf{R}. Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to \mathbf{R} defined for all $x \in A$ by
$\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)$,
$\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)$.

Functions (6/21)

Example

Let f_{1} and f_{2} be functions from \mathbf{R} to \mathbf{R} such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$. What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$?

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=x^{2}+\left(x-x^{2}\right)=x, \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)=x^{2}\left(x-x^{2}\right)=x^{3}-x^{4} .
\end{aligned}
$$

Functions (7/21)

Definition

Let f be a function from A to B and let S be a subset of A.
The image of S under the function f is the subset of B that consists of the images of the elements of S.

We denote the image of S by $f(S)$, so

$$
\begin{gathered}
f(S)=\{t \mid \exists s \in S(t=f(s))\} . \\
\text { or shortly }\{f(s) \mid s \in S\} .
\end{gathered}
$$

Functions (8/21)

Example

Let $A=\{a, b, c, d, e\}$ and $B=\{1,2,3,4\}$ with $f(a)=2, f(b)=1$, $f(c)=4, f(d)=1$, and $f(e)=1$.
$S=\{b, c, d\} \subseteq A$
The image of the subset $S=\{b, c, d\}$ is the set $f(S)=\{1,4\}$

Functions (9/21)

One-to-One function (injective)

A function f is said to be one-to-one, or injective,
if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f.

Functions (9/21)

One-to-One function (injective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=3 \\
& f(c)=7 \\
& f(d)=4 \\
& f(e)=5
\end{aligned}
$$

Functions (9/21)

NOT One-to-One function (Not injective)

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=1 \\
& f(c)=7 \\
& f(d)=4 \\
& f(e)=5
\end{aligned}
$$

Functions (10/21)

onto function (surjective)

A function f from A to B is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.

onto function (surjective)

Functions (10/21)

NOT onto function (Not surjective)

$$
\begin{aligned}
& (\nRightarrow 1 a f \\
& (\nRightarrow 1 b f \\
& (\neq 4 c f \\
& (\nRightarrow 1 d f \\
& (\nRightarrow 3 e f \quad 1,2,3,4 \text { Co-D\&main }=\} \\
& \text { Range }=\{1,3,4\}
\end{aligned}
$$

Functions (11/21)
One-to-one correspondence (bijection)

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

Functions (11/21)

One-to-one correspondence

 (bijection)$$
|\mathrm{A}|=|\mathrm{B}|
$$

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=3 \\
& f(c)=5 \\
& f(d)=2 \\
& f(e)=4 \quad \begin{array}{l}
\text { Ro-Domain }=\{1,2,3,4,5\} \\
\\
f(b)=\{1,2,3,4,5\}
\end{array}
\end{aligned}
$$

NOT One-to-one correspondence (Not

bijection)

Functions (11/21)
NOT One-to-one correspondence (Not
bijection)

NOT One-to-one correspondence (Not

 biijection)Functions (12/21)

Examples

Functions (12/21)

Examples

الذمـك
King Saud University

Functions (12/21)

Examples

$\boldsymbol{A} \quad \rightarrow \quad B$

Functions (12/21)

Examples

$A \quad \rightarrow \quad B$

Functions (12/21)

Examples

Functions (12/21)

Examples

One-to-one

Onto
\therefore bijection

Functions (12/21)

Examples

Functions (12/21)

Examples

NOT One-to-one

NOT Onto

Functions (12/21)

Examples

رؤـــــة VISION
 Functions (12/21)
 "\%

Examples

NOT a function fronfrem A to B

Functions (13/21)

Examples

x Determine whether the function $(f)=x+1$ from the set of integers to the set of integers is one-to-one.

Functions (13/21)

Examples (Answer)

x Determine whether the function $(f)=x+1$ from the set of integers to the set of integers is one-to-one.
()$=b+1 b f \quad(n d)=a+1 a f$
(b) $=f a$ (if f is one $(-t)$-one $(x f)$ and a equal b then).

$$
\begin{gathered}
a+1=b+1 \\
a=b \\
\text { is }(\mathrm{ny} \text { - }- \text { to-one } x \therefore f
\end{gathered}
$$

Functions (14/21)

Examples

Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one.

Functions (14/21)

Examples (Answer)

Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one.
$f(a)=a^{2}$ and $f(b)=b^{2}$
$f(x)$ is one-to-one (if $f(a)=f(b)$ and a equal b then).

$$
\begin{aligned}
a^{2} & =b^{2} \\
\pm a & = \pm b
\end{aligned}
$$

a may be not equal b
$\therefore f(x)$ is NOT one-to-one

Functions (15/21)

Inverse Functions

Let f be a one-to-one correspondence from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=b$. The inverse function of f is denoted by $\boldsymbol{f}^{-\mathbf{1}}$. Hence, $f^{-1}(b)=a$ when $f(a)=b$.

Functions (15/21)

Inverse Functions

Functions (16/21)

Invertible

A one-to-one correspondence is called invertible because we can define an inverse of this function. A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Functions (17/21)

Invertible - Example

Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2$, $f(b)=3$, and $f(c)=1$. Is f invertible, and if it is, what is its inverse?

Functions (17/21)

Invertible - Example

Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2$, $f(b)=3$, and $f(c)=1$. Is f invertible, and if it is, what is its inverse?

Answer:
The function f is invertible because it is a one-to-one correspondence.
The inverse function f^{-1} reverses the correspondence given by f, so
$f=\frac{1}{6}(1)=c, f^{-1}(2)=a$, and $f^{-1}(3)=b$.

Functions (18/21)

Composition of the Functions \boldsymbol{f} and g

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $f \circ g \not \subset(=) f g \notin .())$

Functions (18/21)

Composition of the Functions f and g

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted by $f \circ g$, is defined by $f \circ g \not \subset(=) f g \notin .())$

Note that the composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of \boldsymbol{f}.

```
f\circg
```


Functions (19/21)

Composition Example 1

Let g be the function from the set $\{a, b, c\}$ to itself such that $g(a)=b$, $g(b)=c$, and $g(c)=a$. Let f be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that $f(a)=3, f(b)=2$, and $f(c)=1$. What is the composition of f and g, and what is the composition of g and f ?

Functions (19/21)

Composition Example 1

Let g be the function from the set $\{a, b, c\}$ to itself such that $g(a)=b$, $g(b)=c$, and $g(c)=a$. Let f be the function from the set $\{a, b, c\}$ to the set $\{1,2,3\}$ such that $f(a)=3, f(b)=2$, and $f(c)=1$.

Answer:
1)The composition of f and $g \quad$ (i.e., $(f \circ g)$)
$(f \circ g)(a)=2, \quad(f \circ g)(b)=1, \quad(f \circ g)(c)=3$
$2 \times+$ The composition of g and f (i.e., $(g \circ f)$ cannot be defined the range of f is NOT a subset of the domain of g.

Functions (20/21)

Composition Example 2

Let f and g be the functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$. What is the composition of f and g ? What is the composition of g and f ?

Functions (20/21)

Composition Example 2

Let f and g be the functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$.

Answer:

1) The composition of f and g (i.e., $(f \circ g)$)
$(f \circ g)(x)=f(g(x))=2(3 x+2)+3=6 x+7$
2) The composition of g and f (i.e., $(g \circ f)$)
$=g(f(x))=3(2 x+3)+2=6 x+11$

Functions (21/21)

The Graphs of Functions

Let f be a function from A to
B. The graph of the function f is the set of ordered pairs $\{(a, b) \mid a \in A$ and $b \in B\}$.

$\bullet(-3,9)$	
$\bullet(-2,4)$	$(3,9) \bullet$
$(-1,1) \bullet$	$\bullet(1,1)$
$(0,0)$	

The graph of $f(x)=x^{2}$ from Z to Z.

Some Important Functions (1/4)

Floor function $y=\lfloor x\rfloor$

Some Important Functions (2/4)

Ceiling function $y=\lceil x\rceil$

Some Important Functions (3/4)

Useful Properties

$$
\begin{aligned}
& \lfloor-x\rfloor=-\lceil x\rceil \\
& \lceil-x\rceil=-\lfloor x\rfloor \\
& \lfloor x+n\rfloor=\lfloor x\rfloor+n \\
& \lceil x+n\rceil=\lceil x\rceil+n
\end{aligned}
$$

Some Important Functions (4/4)

Examples

$$
\begin{aligned}
& \lfloor 0.5\rfloor= \\
& \lceil 0.5\rceil= \\
& {[3]=}
\end{aligned}
$$

$$
\lfloor-0.5]=
$$

$$
[-1.2]=
$$

$$
\lfloor 1.1\rfloor=
$$

$$
\lfloor 03+2\rfloor=
$$

$$
\lceil 7 .[0.51\rceil=
$$

Some Important Functions (4/4)

Examples-Answer

$$
\begin{aligned}
& {[0.5]=0} \\
& {[0.5\rceil=1} \\
& {[3\rceil=3}
\end{aligned}
$$

$$
\lfloor-0.5\rfloor=-[0.5]=-1
$$

$$
\lceil-1.2]=-1
$$

$$
\lfloor 1.1]=1
$$

$$
\lfloor 0.3+2\rfloor=2
$$

$$
+[0.51]=3
$$

Sequences (1/13)

Definition

- A sequence is a set of things (usually numbers) that are in order.
> For example, $1,2,3,5,8$ is a sequence with five terms and $1,3,9,27,81, \ldots, 30, \ldots$ is an infinite sequence.
- We use the notation a_{n} to denote the image of the integer n. We call a_{n} a term of the sequence.
- We use the notation $\left\{a_{n}\right\}$ to describe the sequence.
$\left\{a_{n},=a_{1}, a_{2}, a_{3}, \ldots\right.$
\{ \}

Sequences (2/13)

Example

- Consider the sequence $\left\{a_{n}\right\}$, where

1

$$
a_{n}=\bar{n}
$$

The list of the terms of this sequence, beginning with a_{1}, namely,

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots
$$

Starts with

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots
$$

Sequences (3/13)

Geometric

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and
the common ratio r are real numbers.

$2,10,50,250, \ldots$

Sequences (4/13)

Geometric - Example1

$$
\begin{aligned}
& 1,-1,1,-1,1, \ldots ; \\
& \left\{a r^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=1 \\
& r=-1
\end{aligned}
$$

Sequences (5/13)

Geometric - Example3

$$
\begin{aligned}
& 6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots \\
& \left\{a^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=6
\end{aligned}
$$

$$
x=1 / 3
$$

Sequences (7/13)

Geometric - Example4

Find $a, r ?\left\{3 * 4^{n}\right\}, \quad n=0,1,2, \ldots$

$$
\begin{aligned}
& \left\{a r^{n}\right\}, \quad n=0,1,2, \ldots \\
& a=3 \\
& r=4
\end{aligned}
$$

Sequences (8/13)

Geometric - Example5

Find $a, r ?\left\{3 * 4^{n}\right\}, \quad n=1,2,3, \ldots$

$$
\begin{aligned}
& a=12 \\
& r=4
\end{aligned}
$$

Sequences (9/13)

Arithmetic

An arithmetic progression is a sequence of the form

$$
a, a+d, a+2 d, \ldots, a+n d, \ldots
$$

where the initial term a and the common difference d are real numbers.

Arithmetic - Example1

$$
\begin{aligned}
& -1,3,7,11, \ldots \\
& \{a+n d\}, \quad n=0,1,2, \ldots \\
& a=-1 \\
& d=4
\end{aligned}
$$

Sequences (11/13)

Arithmetic - Example2

$$
\begin{aligned}
& 7,4,1,-2, \ldots \\
& \{a+n d\}, \quad n=0,1,2, \ldots \\
& \begin{array}{l}
a=7 \\
d=-3
\end{array} \\
& \left\{\begin{array}{l}
\text { }
\end{array}\right. \\
&
\end{aligned}
$$

Sequences (12/13)

Notes:

- Are terms obtained from previous terms by adding the same amount or an amount that depends on the position in the sequence?
- Are terms obtained from previous terms by multiplying by a particular amount?
- Are terms obtained by combining previous terms in a certain way?
-. Are there cycles among the terms?

Fibonacci Sequence

The Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$,
is defined by the initial conditions $f_{0}=0, f_{1}=1$, and the recurrence relation

$$
f_{n}=f_{n-1}+f_{n-2}
$$

$$
\text { for } n=2,3,4, \ldots .
$$

$0,1,1,2,3,5,8, \ldots$

Summations (1/8)

Next, we introduce summation notation.
We begin by describing the notation used to express the sum of the terms

$$
a_{m}, a_{m+1}, \ldots, a_{n}
$$

from the sequence $\left\{a_{n}\right\}$. We use the notation

$$
\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad \text { or } \quad \sum_{m \leq j \leq n} a_{j}
$$

(read as the sum from $j=m$ to $j=n$ of a_{j})
to represent
Here, the variable j is called the index of summation

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

Summations (1/8)

$$
\sum_{j=m}^{n} a_{j}=\sum_{i=m}^{n} a_{i}=\sum_{k=m}^{n} a_{k}
$$

Here, the index of summation runs through all integers starting with its lower limit m and ending with its upper limit n. A large uppercase Greek letter sigma, \sum, is used to denote summation.

Summations (2/8)

Example 1

Express the sum of the first 100 terms of the sequence $\left\{a_{n}\right\}$,
where $a_{n}=1 / n$ for $n=1,2,3, \ldots$

Summations (3/8)

Example 1

Express the sum of the first 100 terms of the sequence $\left\{a_{n}\right\}$,
where $a_{n}=1 / n$ for $n=1,2,3, \ldots$

Answer
100
(2 $1 / n$

```
    AN=1
```

Summations (4/8)

Example 2

What is the value of $\sum_{j=1}^{5} j^{2}$?

Summations (4/8)

Example 2

What is the value of $\sum_{j=1}^{5} j^{2}$?

Answer

$$
\begin{aligned}
\sum_{j=1}^{5} j^{2} & =1^{2}+2^{2}+3^{2}+4^{2}+5^{2} \\
& =1+4+9+16+25 \\
& =55 .
\end{aligned}
$$

Summations (5/8)

Example 3

What is the value of $\sum_{s \in\{0,2,4\}} s$?

Summations (5/8)

Example 3

What is the value of $\sum_{s \in\{0,2,4\}} s$?

$$
\sum_{s \in\{0,2,4\}} s=0+2+4=6
$$

Summations (6/8)

Example 4

Suppose we have the sum

$$
\sum_{j=1}^{5} j^{2}
$$

but want the index of summation to run between 0 and 4

$$
\sum_{j=1}^{5} j^{2}=\sum_{k=0}^{4}(k+1)^{2}
$$

It is easily checked that both sums are $1+4+9+16+25=55$.

Double Summation

Find

$$
\sum_{i=1}^{4} \sum_{j=1}^{3} i j
$$

Summations (8/8)

Double Summation

Find
$\sum_{i=1}^{4} \sum_{j=1}^{3} i j=\sum_{i=1}^{4}(i+2 i+3 i)$

$$
\begin{aligned}
& =\sum_{i=1}^{4} 6 i \\
& =6+12+18+24=60 .
\end{aligned}
$$

Matrices (1/14)

Definition:

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called square.

Matrices (1/14)

Definition:

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. A matrix with the same number of rows as columns is called square.

Matrices (2/14)

$\boldsymbol{m} \times \boldsymbol{n}$ matrix

Let m and n be positive integers and let

Matrices (3/14)

The (2, 1)th element or entry of \mathbf{A} is the element $\boldsymbol{a}_{\mathbf{2 1}}$, means $2^{\text {nd }}$ row and $1^{\text {st }}$ column of \mathbf{A}.

Matrices (4/14)

Matrix Arithmetic (Sum.)

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A}+\mathbf{B}$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i, j) th element. In other words, $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$.

$$
\begin{array}{ccc}
{\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & 2 & -3 \\
3 & 4 & 0
\end{array}\right]+\left[\begin{array}{rrr}
3 & 4 & -1 \\
1 & -3 & 0 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
4 & 4 & -2 \\
3 & -1 & -3 \\
2 & 5 & 2
\end{array}\right] .} \\
\mathbf{B} & \mathbf{A}+\mathbf{B}
\end{array}
$$

Matrices (4/14)

Note: matrices of different sizes can not be added.

Matrix Arithmetic (Sum.)

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be $m \times n$ matrices.
The sum of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A}+\mathbf{B}$, is the $m \times n$ matrix that has $a_{i j}+b_{i j}$ as its (i, j) th element. In other words, $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$.

Matrix Arithmetic (Product/Multiplication)

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i k} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m k}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 j} & \ldots & b_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots & b_{k n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & c_{i j} & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]
$$

$\mathbf{A}_{\boldsymbol{m} \boldsymbol{k}}$

$\mathrm{B}_{k n}$

$\mathrm{AB}=\mathrm{C}_{\boldsymbol{m} \boldsymbol{n}}$

Matrices (5/14)

Matrix Arithmetic (Product/Multiplication)

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i k} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m k}
\end{array}\right]\left[\begin{array}{cccccc}
b_{11} & b_{12} & \ldots & b_{1 j} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 j} & \ldots & b_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k j} & \ldots & b_{k n}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & c_{i j} & \vdots \\
c_{m 1} & c_{m 2} & \ldots & c_{m n}
\end{array}\right]
$$

$\mathbf{A}_{m(R)}$

$\mathbf{B}_{\mathbb{K} n}$

$\mathrm{AB}=\mathrm{C}_{\boldsymbol{m n}}$

Matrices (6/14)

Example1 (1/2)

$$
\begin{gathered}
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2} \\
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2}
\end{gathered}
$$

Matrices (6/14)

Example1 (2/2)

$$
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2}
$$

$$
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2}
$$

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right] \times\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
6 & 3 \\
10 & 3 \\
9 & -2
\end{array}\right]
$$

Matrices (6/14)

Example1 (2/2)

$$
\mathbf{A}_{3 \times 3}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & -1
\end{array}\right]_{3 \times 3} \quad \mathbf{M}_{3 \times 2}=\left[\begin{array}{rr}
1 & 2 \\
3 & -1 \\
1 & 1
\end{array}\right]_{3 \times 2}
$$

$$
\mathbf{A}_{3 \times 3} \times \mathbf{M}_{3 \times 2}=\mathbf{B}_{3 \times 2}
$$

$$
a_{31}=9
$$

1
1
1
2
3

1 \& 2 \& 3

1 \& 3 \& -1\end{array}\right] \times\left[$$
\begin{array}{rr}1 & 2 \\
3 & -1 \\
1 & 1\end{array}
$$\right]=(\mathbf{1} \times \mathbf{1}+\mathbf{3} \times \mathbf{3}+(-\mathbf{1}) \times \mathbf{1})\)

النمlلك
Matrices (7/14)

Example2 (1/2)

Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] .
$$

Does $\mathbf{A B}=\mathbf{B A}$?

Example2 (2/2)

Let

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

Solution: We find that

$$
\mathbf{A B}=\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] \quad \text { and } \quad \mathbf{B A}=\left[\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right]
$$

Hence, $\mathbf{A B} \neq \mathbf{B A}$.

Matrices (8/14)

Identity matrix $\left(\mathbf{I}_{n}\right)$

The identity matrix of order n is the $n \times n$ matrix

$$
\mathbf{I}_{n}=\left[\delta_{i j}\right], \text { where } \delta_{i j}=1 \text { if } i=j \text { and } \delta_{i j}=0 \text { if } i \neq j
$$

$$
\mathbf{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3}
$$

\mathbf{A} is an $m \times n$ matrix, we have

$$
\mathbf{A} \mathbf{I}_{n}=\mathbf{I}_{m} \mathbf{A}=\mathbf{A} .
$$

Powers of square matrices (A^{r})

When \mathbf{A} is an $n \times n$ matrix, we have
 $\mathbf{A}^{0}=\mathbf{I}_{n}$,
 $\mathbf{A}^{r}=\underbrace{\mathbf{A A A} \cdots \mathbf{A}}$.
 r times

Matrices (10/14)

Transpose of $A\left(A^{t}\right)$

Interchanging the rows and columns of \mathbf{A}

$$
\begin{array}{ccc}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]} \\
\mathbf{A} & {\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]} \\
\mathbf{A}^{\boldsymbol{t}}
\end{array}
$$

Matrices (10/14)

Transpose of $A\left(A^{t}\right)$

Interchanging the rows and columns of \mathbf{A}

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]} \\
\mathbf{A}^{t}
\end{gathered}
$$

Matrices (11/14)

Symmetric

A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{\boldsymbol{t}}$

$$
\left[\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} \\
\mathbf{A}
\end{array}=\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 1
\end{array}\right.} & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Symmetric

A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{t}$

Matrices (12/14)

Zero-One Matrices

A matrix all of whose entries are either $\mathbf{0}$ or $\mathbf{1}$

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

join and meet (Zero-One Matrices)

mee $\quad b_{1} \wedge b_{2}= \begin{cases}1 & \text { if } b_{1}=b_{2}=1 \\ 0 & \text { otherwise, }\end{cases}$
join

$$
b_{1} \vee b_{2}= \begin{cases}1 & \text { if } b_{1}=1 \text { or } b_{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Matrices (14/14)

Example (1/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Matrices (14/14)

Example (2/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

Solution: We find that the join of \mathbf{A} and \mathbf{B} is

$$
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{ccc}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

Matrices (14/14)

Example (3/3)

Find the join and meet of the zero-one matrices

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

Solution:
The meet of \mathbf{A} and \mathbf{B} is

$$
\mathbf{A} \wedge \mathbf{B}=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

