Thermochemistry

$$
\text { Chapter } 6
$$

Energy

Energy is the capacity to do work.

- Radiant energy comes from the sun and is earth's primary energy source
- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom
- Potential energy is the energy available by virtue of an object's position

Energy Changes in Chemical Reactions

Thermochemistry is the study of heat change in chemical reactions.

Heat is the transfer of thermal energy between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy.

Temperature * Thermal Energy

The system is the specific part of the universe that is of interest in the study.

The surroundings are the rest of the universe outside the system.

open
Exchange: mass \& energy

closed
energy

isolated nothing

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

$$
\begin{gathered}
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\eta)+\text { energy } \\
\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\eta)+\text { energy }
\end{gathered}
$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

$$
\begin{gathered}
\text { energy }+2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}\left(\eta+\mathrm{O}_{2}(g)\right. \\
\text { energy }+\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\eta)
\end{gathered}
$$

Schematic of Exothermic and Endothermic Processes

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.
energy, pressure, volume, temperature

$$
\begin{aligned}
& \Delta E=E_{\text {final }}-E_{\text {initial }} \\
& \Delta P=P_{\text {final }}-P_{\text {initial }} \\
& \Delta V=V_{\text {final }}-V_{\text {initial }} \\
& \Delta T=T_{\text {final }}-T_{\text {initial }}
\end{aligned}
$$

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

First law of thermodynamics - energy can be converted from one form to another but cannot be created or destroyed.

$$
\begin{gathered}
\Delta E_{\text {system }}+\Delta E_{\text {surroundings }}=0 \\
\text { or } \\
\Delta E_{\text {system }}=-\Delta E_{\text {surroundings }} \\
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
\text { Exothermic chemical reaction! }
\end{gathered}
$$

Chemical energy lost by combustion = Energy gained by the surroundings system surroundings

Another form of the First Law for $\Delta \mathrm{E}_{\text {system }}$

$$
\Delta E=q+w
$$

ΔE is the change in internal energy of a system
q is the heat exchange between the system and the surroundings
w is the work done on (or by) the system
$w=-P \Delta V$ when a gas expands against a constant external pressure

TABLE 6.1 Sign Conventions for Work and Heat

Process

Sign
Work done by the system on the surroundings
Work done on the system by the surroundings
Heat absorbed by the system from the surroundings (endothermic process)
Heat absorbed by the surroundings from the system (exothermic process)

Work Done on the System

$$
\begin{array}{ll}
w=F \times d & \Delta \mathrm{~V}>0 \\
w=-P \Delta V & -P \Delta V<0 \\
P \times V=\frac{F}{d^{2}} \times d^{B}=F \times d=w & w_{\text {sys }}<0
\end{array}
$$

Work is not a state function.
$\Delta W^{\star} W_{\text {final }}-W_{\text {initial }}$

The units for work done by or on a gas are liters atmospheres.

$$
1 \mathrm{~L} \cdot \mathrm{~atm}=101.3 \mathrm{~J}
$$

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm ?

$$
w=-P \Delta V
$$

(a) $\quad \Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=0 \mathrm{~atm}$

$$
w=-0 \mathrm{~atm} \times 3.8 \mathrm{~L}=0 \mathrm{~L} \cdot \mathrm{~atm}=0 \text { joules }
$$

(b) $\quad \Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=3.7 \mathrm{~atm}$

$$
\begin{aligned}
& w=-3.7 \mathrm{~atm} \times 3.8 \mathrm{~L}=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \\
& w=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \times \frac{101.3 \mathrm{~J}}{1 \mathrm{~L} \mathrm{~atm}}=-1430 \mathrm{~J}
\end{aligned}
$$

Enthalpy and the First Law of Thermodynamics

$$
\Delta E=q+w
$$

At constant pressure:

$$
\begin{gathered}
q=\Delta H \text { and } w=-P \Delta V \\
\Delta E=\Delta H-P \Delta V \\
\Delta H=\Delta E+P \Delta V
\end{gathered}
$$

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm ?

$$
w=-P \Delta V
$$

(a) $\quad \Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=0 \mathrm{~atm}$

$$
w=-0 \mathrm{~atm} \times 3.8 \mathrm{~L}=0 \mathrm{~L} \cdot \mathrm{~atm}=0 \text { joules }
$$

(b) $\quad \Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=3.7 \mathrm{~atm}$

$$
\begin{aligned}
& w=-3.7 \mathrm{~atm} \times 3.8 \mathrm{~L}=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \\
& w=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \times \frac{101.3 \mathrm{~J}}{1 \mathrm{~L} \mathrm{~atm}}=-1430 \mathrm{~J}
\end{aligned}
$$

Enthalpy and the First Law of Thermodynamics

$$
\Delta E=q+w
$$

At constant pressure:

$$
\begin{gathered}
q=\Delta H \text { and } w=-P \Delta V \\
\Delta E=\Delta H-P \Delta V \\
\Delta H=\Delta E+P \Delta V
\end{gathered}
$$

Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

$$
\Delta H=H \text { (products) }-H \text { (reactants) }
$$

$\Delta H=$ heat given off or absorbed during a reaction at constant pressure

$H_{\text {products }}>H_{\text {reactants }}$ $\Delta H>0$

Thermochemical Equations

Is ΔH negative or positive?

System absorbs heat
Endothermic
$\Delta H>0$
6.01 kJ are absorbed for every 1 mole of ice that melts at $0^{\circ} \mathrm{C}$ and 1 atm.

$$
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

Thermochemical Equations

Is ΔH negative or positive?

System gives off heat
Exothermic
$\Delta H<0$
890.4 kJ are released for every 1 mole of methane that is combusted at $25^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}() \quad \Delta H=-890.4 \mathrm{~kJ} / \mathrm{mol}
$$

Thermochemical Equations

- The stoichiometric coefficients always refer to the number of moles of a substance

$$
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s} \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you reverse a reaction, the sign of ΔH changes

$$
\mathrm{H}_{2} \mathrm{O} \text { (ID) } \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { © }(\mathrm{s}) \quad \Delta H=-6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$
2 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}() \quad \Delta H=2 \times 6.01=12.0 \mathrm{~kJ}
$$

Thermochemical Equations

The physical states of all reactants and products must be specified in thermochemical equations.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O} \text { (S) } \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (ID) } & \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (90) } & \Delta H=44.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

How much heat is evolved when 266 g of white phosphorus $\left(\mathrm{P}_{4}\right)$ burn in air:
$\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) \quad \Delta H=-3013 \mathrm{~kJ} / \mathrm{mol}$
$266 g P_{4} \times \frac{1 \mathrm{mot}_{4}}{123.9 \mathrm{gP}_{4}} \times \frac{-3013 \mathrm{~kJ}}{1 \mathrm{mot}_{4}}=-6470 \mathrm{~kJ} / \mathrm{mol}$

A Comparison of ΔH and ΔE

$2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{l} \longrightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g) \Delta \mathrm{H}=-367.5 \mathrm{~kJ} / \mathrm{mol}\right.$

$$
\begin{aligned}
& \Delta E=\Delta H-P \Delta V \quad \text { At } 25^{\circ} \mathrm{C}, 1 \mathrm{~mole}_{2}=24.5 \mathrm{~L} \text { at } 1 \mathrm{~atm} \\
& P \Delta V=1 \mathrm{~atm} \times 24.5 \mathrm{~L}=2.5 \mathrm{~kJ} \\
& \Delta E=-367.5 \mathrm{~kJ} / \mathrm{mol}-2.5 \mathrm{~kJ} / \mathrm{mol}=-370 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The reason ΔH is smaller than ΔE in magnitude is that some of the internal energy released is used to do gas expansion work, so less heat is evolved.

A Comparison of ΔH and ΔE

To calculate the internal energy change of a gaseous reaction is to assume ideal gas behavior and constant temperature

$$
\begin{aligned}
\Delta E & =\Delta H-\Delta(P V) \\
& =\Delta H-\Delta(n R T) \\
& =\Delta H-R T \Delta n
\end{aligned}
$$

EXAMPLE 6.4

Calculate the change in internal energy when 2 moles of CO are converted to 2 moles of CO_{2} at 1 atm and $25^{\circ} \mathrm{C}$:

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g) \quad \Delta H=-566.0 \mathrm{~kJ} / \mathrm{mol}
$$

Solution From the chemical equation we see that 3 moles of gases are converted to 2 moles of gases so that

$$
\begin{aligned}
\Delta n & =\text { number of moles of product gas }- \text { number of moles of reactant gases } \\
& =2-3 \\
& =-1
\end{aligned}
$$

Using $8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ for R and $T=298 \mathrm{~K}$ in Equation (6.10), we write

$$
\begin{aligned}
\Delta E & =\Delta H-R T \Delta n \\
& =-566.0 \mathrm{~kJ} / \mathrm{mol}-(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)(298 \mathrm{~K})(-1) \\
& =-563.5 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

- The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius.
- The heat capacity (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius.

TABLE 6.2

The Specific Heats

of Some Common

Substances

Substance	Specific Heat $\left(\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
$\mathrm{H}_{2} \mathrm{O}$	4.184
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)	2.46

$$
C=m \times s
$$

Heat (q) absorbed or released:

$$
\begin{aligned}
& q=m \times s \times \Delta t \\
& q=C \times \Delta t \\
& \Delta t=t_{\text {final }}-t_{\text {initial }} \quad t: \text { in }{ }^{\circ} \mathrm{C}
\end{aligned}
$$

How much heat is given off when an 869 g iron bar cools from $94^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$?
(s of $\mathrm{Fe}=0.444 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& \Delta t=t_{\text {tinal }}-t_{\text {initial }}=5^{\circ} \mathrm{C}-94^{\circ} \mathrm{C}=-89^{\circ} \mathrm{C} \\
& q=m s \Delta t=869 \not g \times 0.444 \mathrm{~J} / g \cdot \circ \not \mathrm{C} \times-89^{\circ} \mathrm{C}=-34,000 \mathrm{~J}
\end{aligned}
$$

EXAMPLE 6.5

A $466-\mathrm{g}$ sample of water is heated from $8.50^{\circ} \mathrm{C}$ to $74.60^{\circ} \mathrm{C}$. Calculate the amount of heat absorbed (in kilojoules) by the water.

Strategy We know the quantity of water and the specific heat of water. With this information and the temperature rise, we can calculate the amount of heat absorbed (q).

Solution Using Equation (6.12), we write

$$
\begin{aligned}
q & =m s \Delta t \\
& =(466 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(74.60^{\circ} \mathrm{C}-8.50^{\circ} \mathrm{C}\right) \\
& =1.29 \times 10^{5} \mathrm{~J} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}} \\
& =129 \mathrm{~kJ}
\end{aligned}
$$

Standard Enthalpy of Formation and Reaction

- Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?
- Establish an arbitrary scale with the standard enthalpy of formation $\left(\Delta \mathrm{H}^{0}\right)$ as a reference point for all enthalpy expressions.
- Standard enthalpy of formation $\left(\Delta \mathrm{H}^{0}\right)$ is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm.
- The standard enthalpy of formation of any element in its most stable form is zero.
$\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{2}\right)=0$
$\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{3}\right)=142 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{0}(\mathrm{C}$, graphite $)=0$
$\Delta H_{f}^{0}(\mathrm{C}$, diamond $)=1.90 \mathrm{~kJ} / \mathrm{mol}$

TABLE 6.4 Standard Enthalpies of Formation of Some Inorganic
Substances at $25^{\circ} \mathrm{C}$

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Substance	$\Delta H_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{Ag}(s)$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-187.6
$\mathrm{AgCl}(s)$	-127.0	$\mathrm{Hg}(l)$	0
$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(s)$	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.9
$\mathrm{Br}_{2}(l)$	0	$\operatorname{Mg}(s)$	0
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(\mathrm{s})$	-601.8
C(graphite)	0	$\mathrm{MgCO}_{3}(s)$	-1112.9
C(diamond)	1.90	$\mathrm{N}_{2}(g)$	0
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NO}(g)$	90.4
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{CaO}(\mathrm{s})$	-635.6	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
$\mathrm{CaCO}_{3}(s)$	-1206.9	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	9.66
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
$\mathrm{CuO}(\mathrm{s})$	-155.2	S(rhombic)	0
$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
HF(g)	-271.6	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
$\mathrm{H}(\mathrm{g})$	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{Zn}(\mathrm{s})$	0
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	$\mathrm{ZnO}(s)$	-348.0

The standard enthalpy of reaction $\left(\Delta \mathrm{H}^{0}\right.$) kxis is 2 the enthalpy of a reaction carried out at 1 atm.

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { products })-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { reactants }) \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\left[c \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C})+d \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{D})\right]-\left[a \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~A})+b \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~B})\right]
\end{gathered}
$$

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.
(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end)

The Direct Method

- Suppose we want to know the enthalpy of formation of carbon dioxide.
- We must measure the enthalpy of the reaction when carbon (graphite) and molecular oxygen in their standard states are converted to carbon dioxide in its standard state:

$$
\begin{aligned}
& \mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta H_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& \begin{aligned}
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { products })-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { reactants })
\end{aligned} \\
& \begin{array}{r}
\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}, g\right)-\left[\Delta H_{\mathrm{f}}^{\circ}(\mathrm{C}, \text { graphite })+\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}, g\right)\right] \\
=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}, g\right)=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}, g\right)=-393.5 \mathrm{~kJ} / \mathrm{mol}
\end{array}
\end{aligned}
$$

Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is $49.04 \mathrm{~kJ} / \mathrm{mol}$.
$\Delta \mathrm{H}_{\dagger}^{0}\left(\mathrm{CO}_{2}\right)=-393.5 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{H}_{\dagger}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)=-285.8 \mathrm{~kJ} / \mathrm{mol}$

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(\eta)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\eta)
$$

$\Delta \mathrm{H}_{\mathrm{rx}}^{0}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{0}($ products $)-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{0}$ (reactants)

$$
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\left[12 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{CO}_{2}\right)+6 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[2 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]
$$

$$
\Delta H_{r \times n}^{0}=[12 \times-393.5+6 \times-285.8]-[2 \times 49.04]=-5946 \mathrm{~kJ}
$$

$\frac{-5946 \mathrm{~kJ}}{2 \mathrm{~mol}}=-2973 \mathrm{~kJ} / \mathrm{mol} \mathrm{C} 6 \mathrm{H}_{6}$

The Indirect Method (Hess's Law)

- Many compounds cannot be directly synthesized from their elements.
- The reaction proceeds too slowly, or side reactions produce substances other than the desired compound.

> Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps...

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end)

Let's say we are interested in the standard enthalpy of formation of carbon monoxide (CO).

$$
\mathrm{C} \text { (graphite) }+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}(g)
$$

However, burning graphite also produces some carbon dioxide $\left(\mathrm{CO}_{2}\right)$, so we cannot measure the enthalpy change for CO directly. We must employ an indirect route, based on Hess's law. It is possible to carry out the following two separate reactions:
(a)
(b)

$$
\begin{aligned}
\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta H_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta H_{\mathrm{rxn}}^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

First, we reverse Equation (b) to get

$$
\begin{equation*}
\mathrm{CO}_{2}(g) \longrightarrow \mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \quad \Delta H_{\mathrm{rxn}}^{\circ}=+283.0 \mathrm{~kJ} / \mathrm{mol} \tag{c}
\end{equation*}
$$

we carry out the operation (a) + (c) and obtain
(c)
(d)

$$
\left.\begin{array}{rl}
\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta H_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \tag{a}\\
\mathrm{CO}_{2}(g) \longrightarrow \mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) & \Delta H_{\mathrm{rxn}}^{\circ}=+283.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}\right] \begin{array}{ll}
\Delta H_{\mathrm{rxn}}^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{C} \text { (graphite) }+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}(g) \\
& \mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \\
& \mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Calculate the standard enthalpy of formation of CS_{2} ($/$) given that:

$$
\begin{array}{ll}
\mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) & \Delta \mathrm{H}^{0} \mathrm{rxr=}-393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{~S} \text { (rhombic) }+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g) & \Delta \mathrm{H}^{\mathrm{rxrF}=}-296.1 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CS}_{2}\left(g+3 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{SO}_{2}(g)\right. & \Delta \mathrm{H}^{0}{ }^{\mathrm{rxrr}}=-1072 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

1. Write the enthalpy of formation reaction for CS_{2}

2. Add the given rxns so that the result is the desired rxn.

$$
\begin{aligned}
& \text { C(graphite) }+\mathrm{Q}_{\mathrm{Q}}(\mathrm{~g}) \longrightarrow \mathrm{CQ}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1 \times n}^{0}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\
& 2 \mathrm{~S}(\text { rhombic })+2 \mathrm{Q}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SQ}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-296.1 \mathrm{~kJ} / \mathrm{mol} \times 2 \\
& \xrightarrow[\mathrm{C} \text { (graphite) }+2 \mathrm{~S} \text { (rhombic) } \longrightarrow \mathrm{CQ}_{2}(g)+2 \mathrm{SQ}_{2}(g) \longrightarrow 3 \mathrm{Q}_{2}(g)]{\mathrm{CS}_{2}(\mathrm{~g}} \\
& \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-393.5+(2 \mathrm{x}-296.1)+1072=86.3 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Constant-Volume Calorimetry

No heat enters or leaves!

$$
\begin{aligned}
\mathrm{q}_{\mathrm{sys}} & =\mathrm{q}_{\text {water }}+\mathrm{q}_{\mathrm{bomb}}+\mathrm{q}_{\mathrm{rxn}} \\
\mathrm{q}_{\mathrm{sys}} & =0 \\
\mathrm{q}_{\mathrm{rxn}} & =-\left(\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {bomb }}\right) \\
\mathrm{q}_{\text {water }} & =m \times s \times \Delta t \\
\mathrm{q}_{\text {bomb }} & =\mathrm{C}_{\text {bomb }} \times \Delta t
\end{aligned}
$$

Reaction at Constant V

$$
\begin{aligned}
& \Delta H \neq q_{\mathrm{rxn}} \\
& \Delta H \sim q_{\mathrm{rxn}}
\end{aligned}
$$

EXAMPLE 6.6

A quantity of 1.435 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$, a pungent-smelling substance used in moth repellents, was burned in a constant-volume bomb calorimeter. Consequently, the temperature of the water rose from $20.28^{\circ} \mathrm{C}$ to $25.95^{\circ} \mathrm{C}$. If the heat capacity of the bomb plus water was $10.17 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the heat of combustion of naphthalene on a molar basis; that is, find the molar heat of combustion.

Solution The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change. From Equation (6.16), assuming no heat is lost to the surroundings, we write

$$
\begin{aligned}
q_{\mathrm{cal}} & =C_{\mathrm{cal}} \Delta t \\
& =\left(10.17 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(25.95^{\circ} \mathrm{C}-20.28^{\circ} \mathrm{C}\right) \\
& =57.66 \mathrm{~kJ}
\end{aligned}
$$

Because $q_{\mathrm{sys}}=q_{\mathrm{cal}}+q_{\mathrm{rxn}}=0, q_{\mathrm{cal}}=-q_{\mathrm{rxn}}$. The heat change of the reaction is -57.66 kJ . This is the heat released by the combustion of 1.435 g of $\mathrm{C}_{10} \mathrm{H}_{8}$; therefore, we can write the conversion factor as

$$
\frac{-57.66 \mathrm{~kJ}}{1.435 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{8}}
$$

The molar mass of naphthalene is 128.2 g , so the heat of combustion of 1 mole of naphthalene is

$$
\begin{aligned}
\text { molar heat of combustion } & =\frac{-57.66 \mathrm{~kJ}}{1.435 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{8}} \times \frac{128.2 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{8}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{8}} \\
& =-5.151 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Chemistry in Action:

Fuel Values of Foods and Other Substances

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-2801 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\begin{aligned}
& 1 \mathrm{cal}=4.184 \mathrm{~J} \\
& 1 \mathrm{cal}=1000 \mathrm{cal}=4184 \mathrm{~J}
\end{aligned}
$$

Fuel Values of Foods

Substance	$\Delta H_{\text {combeatien }}(\mathbf{k J} / \mathrm{g})$
Apple	-2
Beef	8
Beer	-1.5
Bread	-11
Butter	-34
Cheese	-18
Eggs	6
Milk	-3
Potatoes	-3

Constant-Pressure Calorimetry

$$
\begin{aligned}
\mathrm{q}_{\mathrm{sys}} & =\mathrm{q}_{\text {water }}+\mathrm{q}_{\mathrm{cal}}+\mathrm{q}_{\mathrm{rxn}} \\
\mathrm{q}_{\mathrm{sys}} & =0 \\
\mathrm{q}_{\mathrm{rxn}} & =-\left(\mathrm{q}_{\text {water }}+\mathrm{q}_{\mathrm{cal}}\right) \\
\mathrm{q}_{\text {water }} & =m \times s \times \Delta t
\end{aligned}
$$

Reaction at Constant P

$$
\Delta H=q_{\mathrm{rxn}}
$$

No heat enters or leaves!

EXAMPLE 6.7

A lead (Pb) pellet having a mass of 26.47 g at $89.98^{\circ} \mathrm{C}$ was placed in a constant-pressure calorimeter of negligible heat capacity containing 100.0 mL of water. The water temperature rose from $22.50^{\circ} \mathrm{C}$ to $23.17^{\circ} \mathrm{C}$. What is the specific heat of the lead pellet?
Solution Treating the calorimeter as an isolated system (no heat lost to the surroundings),
we write
or

$$
\begin{aligned}
& q_{\mathrm{Pb}}+q_{\mathrm{H}_{2} \mathrm{O}}=0 \\
& q_{\mathrm{Pb}}=-q_{\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

The heat gained by the water is given by

$$
q_{\mathrm{H}_{2} \mathrm{O}}=m s \Delta t
$$

where m and s are the mass and specific heat and $\Delta t=t_{\text {final }}-t_{\text {initial }}$. Therefore,

$$
\begin{aligned}
q_{\mathrm{H}_{2} \mathrm{O}} & =(100.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(23.17^{\circ} \mathrm{C}-22.50^{\circ} \mathrm{C}\right) \\
& =280.3 \mathrm{~J}
\end{aligned}
$$

Because the heat lost by the lead pellet is equal to the heat gained by the water, so $q_{\mathrm{Pb}}=-280.3 \mathrm{~J}$. Solving for the specific heat of Pb , we write

$$
\begin{aligned}
q_{\mathrm{Pb}} & =m s \Delta t \\
-280.3 \mathrm{~J} & =(26.47 \mathrm{~g})(s)\left(23.17^{\circ} \mathrm{C}-89.98^{\circ} \mathrm{C}\right) \\
s & =0.158 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Some Heats of Reaction

Table 6.3 Heats of Some Typical Reactions Measured at Constant Pressure

Type of Reaction	Example	$\Delta \mathbf{H}$ $(\mathbf{k J} / \mathbf{m o l})$
Heat of neutralization	$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$	-56.2
Heat of ionization	$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$	56.2
Heat of fusion	$\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$	6.01
Heat of vaporization	$\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$44.0 *$
Heat of reaction	$\mathrm{MgCl}_{2}(s)+2 \mathrm{Na}(l) \rightarrow 2 \mathrm{Nacl}(s)+\mathrm{Mg}(s)$	-180.2

EXAMPLE 6.8

A quantity of $1.00 \times 10^{2} \mathrm{~mL}$ of 0.500 M HCl was mixed with $1.00 \times 10^{2} \mathrm{~mL}$ of 0.500 M NaOH in a constant-pressure calorimeter of negligible heat capacity. The initial temperature of the HCl and NaOH solutions was the same, $22.50^{\circ} \mathrm{C}$, and the final temperature of the mixed solution was $25.86^{\circ} \mathrm{C}$. Calculate the heat change for the neutralization reaction on a molar basis

$$
\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Assume that the densities and specific heats of the solutions are the same as for water $\left(1.00 \mathrm{~g} / \mathrm{mL}\right.$ and $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, respectively).

Strategy Because the temperature rose, the neutralization reaction is exothermic. How do we calculate the heat absorbed by the combined solution? What is the heat of the reaction? What is the conversion factor for expressing the heat of reaction on a molar basis?

Solution Assuming no heat is lost to the surroundings, $q_{\mathrm{sys}}=q_{\mathrm{soln}}+q_{\mathrm{rxn}}=0$, so $q_{\mathrm{rxn}}=-q_{\text {soln }}$, where $q_{\text {soln }}$ is the heat absorbed by the combined solution. Because
(Continued)
the density of the solution is $1.00 \mathrm{~g} / \mathrm{mL}$, the mass of a $100-\mathrm{mL}$ solution is 100 g . Thus,

$$
\begin{aligned}
q_{\text {soln }} & =m s \Delta t \\
& =\left(1.00 \times 10^{2} \mathrm{~g}+1.00 \times 10^{2} \mathrm{~g}\right)\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(25.86^{\circ} \mathrm{C}-22.50^{\circ} \mathrm{C}\right) \\
& =2.81 \times 10^{3} \mathrm{~J} \\
& =2.81 \mathrm{~kJ}
\end{aligned}
$$

Because $q_{\mathrm{rxn}}=-q_{\mathrm{soln}}, q_{\mathrm{rxn}}=-2.81 \mathrm{~kJ}$.
From the molarities given, the number of moles of both HCl and NaOH in $1.00 \times 10^{2} \mathrm{~mL}$ solution is

$$
\frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}} \times 0.100 \mathrm{~L}=0.0500 \mathrm{~mol}
$$

Therefore, the heat of neutralization when 1.00 mole of HCl reacts with 1.00 mole of NaOH is

$$
\text { heat of neutralization }=\frac{-2.81 \mathrm{~kJ}}{0.0500 \mathrm{~mol}}=-56.2 \mathrm{~kJ} / \mathrm{mol}
$$

Enthalpy of Solution

The enthalpy of solution ($\boldsymbol{\Delta} \boldsymbol{H}_{\text {soln }}$) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.

$$
\Delta H_{\text {soln }}=\Delta H_{\text {soln }}-H_{\text {components }}
$$

Table 6.5 Heats of Solution of Some Ionic Compounds

Compound	$\Delta H_{\text {soln }}(\mathbf{k J} / \mathbf{m o l})$
LiCl	-37.1
CaCl_{2}	-82.8
NaCl	4.0
KCl	17.2
$\mathrm{NH}_{4} \mathrm{Cl}$	15.2
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	26.6

The Solution Process for NaCl

$$
\Delta \boldsymbol{H}_{\text {sol }}=\text { step } 1+\text { step } 2=788-784=4 \mathrm{~kJ} / \mathrm{mol}
$$

