

Mass Relationships in Chemical Reactions

Chapter 3

Atomic mass

Micro World
 Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)
amu definition: the mass exactly equal to $1 / 12$ the mass of one ${ }^{12} \mathrm{C}$ atom
${ }^{12} \mathrm{C}=6 \mathrm{p}, 6 \mathrm{n}=12.00 \mathrm{amu} \quad \mathrm{me}^{-}=0$
Experiment shows one atom ${ }^{1} \mathrm{H}=8.400 \%$ of ${ }^{12} \mathrm{C}$ atom thus; mass of one atom ${ }^{1} \mathrm{H}=1.008 \mathrm{amu}$
($12.00 \times .08400$)
${ }^{16} \mathrm{O}=16.00 \mathrm{amu},{ }^{26} \mathrm{Fe}=55.85 \mathrm{amu}$

The average atomic mass is the weighted average of all the naturally occurring isotopes of the element.

$(0.9890 \times 12.00000 \mathrm{amu})+(0.0110 \times 13.00335)=12.01 \mathrm{amu}$

Naturally occurring lithium is:

$$
\begin{gathered}
7.42 \%{ }^{6} \mathrm{Li}(6.015 \mathrm{amu}) \\
92.58 \%^{7} \mathrm{Li}(7.016 \mathrm{amu})
\end{gathered}
$$

Average atomic mass of lithium:
$\frac{(7.42 \times 6.015)+(92.58 \times 7.016)}{100}=6.941 \mathrm{amu}$

EXAMPLE 3.1

Copper, a metal known since ancient times, is used in electrical cables and pennies, among other things. The atomic masses of its two stable isotopes, ${ }_{29}^{63} \mathrm{Cu}$ (69.09 percent) and ${ }_{29}^{65} \mathrm{Cu}$ (30.91 percent), are 62.93 amu and 64.9278 amu , respectively. Calculate the average atomic mass of copper. The relative abundances are given in parentheses.

Strategy Each isotope contributes to the average atomic mass based on its relative abundance. Multiplying the mass of an isotope by its fractional abundance (not percent) will give the contribution to the average atomic mass of that particular isotope.

Solution First the percents are converted to fractions: 69.09 percent to $69.09 / 100$ or 0.6909 and 30.91 percent to $30.91 / 100$ or 0.3091 . We find the contribution to the average atomic mass for each isotope, then add the contributions together to obtain the average atomic mass.

$$
(0.6909)(62.93 \mathrm{amu})+(0.3091)(64.9278 \mathrm{amu})=63.55 \mathrm{amu}
$$

	Metals
	Metalloids

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Prasedymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Yteerium	Lutetium
140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium (231)	Uranum 238.0	Neptunium (237)	Plutonium (242)	Americium (243)	Curium (247)	Berkelium (247)	Californium (249)	Einsteinium (254)	Femium	Mendelevium	Nobelium	Lawrencium (257)

The Mole

The Mole (mol): A unit to count numbers of particles

Dozen = 12

$$
\text { Pair = } 2
$$

The mole (mol) is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ${ }^{12} \mathrm{C}$

$$
1 \mathrm{~mol}=N_{A}=6.0221367 \times 10^{23}
$$

Avogadro's number $\left(N_{A}\right)$

eggs

Molar mass is the mass of 1 mole of $\begin{gathered}\text { shoes } \\ \text { marbles }\end{gathered}$ in grams atoms

$$
\begin{aligned}
& 1 \text { mole }{ }^{12} \mathrm{C} \text { atoms }=6.022 \times 10^{23} \text { atoms }=12.00 \mathrm{~g} \\
& 1^{12} \mathrm{C} \text { atom }=12.00 \mathrm{amu}
\end{aligned}
$$

$$
1 \text { mole }{ }^{12} \mathrm{C} \text { atoms }=12.00 \mathrm{~g}{ }^{12} \mathrm{C}
$$

1 mole lithium atoms $=6.941 \mathrm{~g}$ of Li

For any element atomic mass (amu) = molar mass (grams)

One Mole of:

Conversion Between Mass and Atoms

$\frac{1^{12} \mathrm{C} \text { atom }}{12.00 \mathrm{amu}} \times \frac{12.00 \mathrm{~g}}{6.022 \times 10^{23}{ }^{12} \mathrm{C} \text { atoms }}=\frac{1.66 \times 10^{-24} \mathrm{~g}}{1 \mathrm{amu}}$
$1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}$ or $1 \mathrm{~g}=6.022 \times 10^{23} \mathrm{amu}$

$\mathcal{M}=$ molar mass in ($\mathbf{g} / \mathbf{m o l}$)
$N_{A}=$ Avogadro's number

How many atoms are in 0.551 g of potassium (K) ?

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{~K}=39.10 \mathrm{~g} \mathrm{~K} \\
& 1 \mathrm{~mol} \mathrm{~K}=6.022 \times 10^{23} \text { atoms } \mathrm{K}
\end{aligned}
$$

$0.551 \mathrm{gK} \times \frac{1 \mathrm{mot} \mathrm{K}}{39.10 \mathrm{gK}} \times \frac{6.022 \times 10^{23} \text { atoms } \mathrm{K}}{1 \mathrm{mot} \mathrm{K}}=$

8.49×10^{21} atoms K

EXAMPLE 3.2

Helium (He) is a valuable gas used in industry, low-temperature research, deep-sea diving tanks, and balloons. How many moles of He atoms are in 6.46 g of He ?

Solution The conversion factor needed to convert between grams and moles is the molar mass. In the periodic table (see inside front cover) we see that the molar mass of He is 4.003 g . This can be expressed as

$$
1 \mathrm{~mol} \mathrm{He}=4.003 \mathrm{~g} \mathrm{He}
$$

From this equality, we can write two conversion factors

$$
\frac{1 \mathrm{~mol} \mathrm{He}}{4.003 \mathrm{~g} \mathrm{He}} \text { and } \frac{4.003 \mathrm{~g} \mathrm{He}}{1 \mathrm{~mol} \mathrm{He}}
$$

The conversion factor on the left is the correct one. Grams will cancel, leaving the unit mol for the answer, that is,

$$
6.46 \mathrm{~g} \mathrm{He} \times \frac{1 \mathrm{~mol} \mathrm{He}}{4.003 \mathrm{gHe}}=1.61 \mathrm{~mol} \mathrm{He}
$$

Thus, there are 1.61 moles of He atoms in 6.46 g of He .

EXAMPLE 3.3

Zinc (Zn) is a silvery metal that is used in making brass (with copper) and in plating iron to prevent corrosion. How many grams of Zn are in 0.356 mole of Zn ?

Solution The conversion factor needed to convert between moles and grams is the molar mass. In the periodic table (see inside front cover) we see the molar mass of Zn is 65.39 g . This can be expressed as

$$
1 \mathrm{~mol} \mathrm{Zn}=65.39 \mathrm{~g} \mathrm{Zn}
$$

From this equality, we can write two conversion factors

$$
\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}} \text { and } \frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}}
$$

The conversion factor on the right is the correct one. Moles will cancel, leaving unit of grams for the answer. The number of grams of Zn is

$$
0.356 \mathrm{molZn} \times \frac{65.39 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}}=23.3 \mathrm{~g} \mathrm{Zn}
$$

Thus, there are 23.3 g of Zn in 0.356 mole of Zn .

EXAMPLE 3.4

Sulfur (S) is a nonmetallic element that is present in coal. When coal is burned, sulfur is converted to sulfur dioxide and eventually to sulfuric acid that gives rise to the acid rain phenomenon. How many atoms are in 16.3 g of S ?
Solution We need two conversions: first from grams to moles and then from moles to number of particles (atoms). The first step is similar to Example 3.2. Because

$$
1 \mathrm{~mol} \mathrm{~S}=32.07 \mathrm{~g} \mathrm{~S}
$$

the conversion factor is

$$
\frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{~g} \mathrm{~S}}
$$

Avogadro's number is the key to the second step. We have

$$
1 \mathrm{~mol}=6.022 \times 10^{23} \text { particles (atoms) }
$$

and the conversion factors are

$$
\begin{gathered}
\frac{6.022 \times 10^{23} \mathrm{~S} \text { atoms }}{1 \mathrm{~mol} \mathrm{~S}} \text { and } \frac{1 \mathrm{~mol} \mathrm{~S}}{6.022 \times 10^{23} \mathrm{~S} \text { atoms }} \\
16.3 \mathrm{gS} \times \frac{1 \mathrm{mot}}{32.07 \mathrm{gS}} \times \frac{6.022 \times 10^{23} \mathrm{~S} \text { atoms }}{1 \mathrm{mots}}=3.06 \times 10^{23} \mathrm{~S} \text { atoms }
\end{gathered}
$$

Molecular Mass

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

1 S	32.07 amu
2 O	$+(2 \times 16.00 \mathrm{amu})$
SO_{2}	64.07 amu

For any molecule molecular mass (amu) = molar mass (grams)

1 molecule $\mathrm{SO}_{2}=64.07 \mathrm{amu}$
1 mole $\mathrm{SO}_{2}=64.07 \mathrm{~g} \mathrm{SO}_{2}$

EXAMPLE 3.6

Methane $\left(\mathrm{CH}_{4}\right)$ is the principal component of natural gas. How many moles of CH_{4} are present in 6.07 g of CH_{4} ?

Solution The conversion factor needed to convert between grams and moles is the molar mass. First we need to calculate the molar mass of CH_{4}, following the procedure in Example 3.5:

$$
\begin{aligned}
\text { molar mass of } \mathrm{CH}_{4} & =12.01 \mathrm{~g}+4(1.008 \mathrm{~g}) \\
& =16.04 \mathrm{~g}
\end{aligned}
$$

Because

$$
1 \mathrm{~mol} \mathrm{CH}_{4}=16.04 \mathrm{~g} \mathrm{CH}_{4}
$$

the conversion factor we need should have grams in the denominator so that the unit g will cancel, leaving the unit mol in the numerator:

$$
\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}
$$

We now write

$$
6.07 \mathrm{gCH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{gCH}_{4}}=0.378 \mathrm{~mol} \mathrm{CH}_{4}
$$

Thus, there is 0.378 mole of CH_{4} in 6.07 g of CH_{4}.

How many H atoms are in 72.5 g of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$?

$$
1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}=(3 \times 12)+(8 \times 1)+16=60 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}
$$

$1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ molecules $=8 \mathrm{~mol} \mathrm{H}$ atoms $1 \mathrm{~mol} \mathrm{H}=6.022 \times 10^{23}$ atoms H
$72.5 \mathrm{~g}_{3} \mathrm{H}_{8} \mathrm{O} \times \frac{1 \text { mot } \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}}{60 \mathrm{~g}-\mathrm{G}_{3} \mathrm{H}_{8} \mathrm{O}} \times \frac{8 \text { moth atoms }}{1 \text { mol } \sigma_{3} \mathrm{H}_{8} \mathrm{O}} \times \frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \text { mol } \mathrm{Hatoms}}=$
5.82×10^{24} atoms H

EXAMPLE 3.7

How many hydrogen atoms are present in 25.6 g of urea $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$, which is used as a fertilizer, in animal feed, and in the manufacture of polymers? The molar mass of urea is 60.06 g .

Solution To calculate the number of H atoms, we first must convert grams of urea to moles of urea using the molar mass of urea. This part is similar to Example 3.2. The molecular formula of urea shows there are four moles of H atoms in one mole of urea molecule, so the mole ratio is $4: 1$. Finally, knowing the number of moles of H atoms, we can calculate the number of H atoms using Avogadro's number. We need two conversion factors: molar mass and Avogadro's number. We can combine these conversions

$$
\text { grams of urea } \longrightarrow \text { moles of urea } \longrightarrow \text { moles of } \mathrm{H} \longrightarrow \text { atoms of } \mathrm{H}
$$

into one step:

$$
\begin{aligned}
25.6 \mathrm{~g}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}}{60.06 \mathrm{~g}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}} \times \frac{4 \mathrm{molH}}{1 \mathrm{~mol}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}} & \times \frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \mathrm{molH}} \\
& =1.03 \times 10^{24} \mathrm{H} \text { atoms }
\end{aligned}
$$

Formula Mass

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

1 Na	22.99 amu
NaCl	1 Cl
NaCl	+35.45 amu
58.44 amu	

For any ionic compound
formula mass $(\mathrm{amu})=$ molar mass (grams)
1 formula unit $\mathrm{NaCl}=58.44 \mathrm{amu}$

$$
1 \text { mole } \mathrm{NaCl}=58.44 \mathrm{~g} \mathrm{NaCl}
$$

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

22.99 amu
$\mathrm{NaCl}_{\mathrm{Cl}} \frac{+35.45 \mathrm{amu}}{58.44 \mathrm{amu}}$

For any ionic compound
formula mass (amu) = molar mass (grams)
1 formula unit $\mathrm{NaCl}=58.44 \mathrm{amu}$
1 mole $\mathrm{NaCl}=58.44 \mathrm{~g} \mathrm{NaCl}$

What is the formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

1 formula unit of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
\begin{aligned}
& 3 \mathrm{Ca} \\
& 2 \mathrm{P}
\end{aligned} \begin{array}{r}
3 \times 40.08 \\
8 \mathrm{O} \\
\hline
\end{array} \quad 8 \times 30.97016 .00 \mathrm{amu}
$$

Mass Spectrometer

Mass Spectrum of Ne

Percent composition of an element in a compound $=$
$\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%$
n is the number of moles of the element in 1 mole of the compound

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

$$
\begin{aligned}
& \% C=\frac{2 \times(12.01 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=52.14 \% \\
& \% H=\frac{6 \times(1.008 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=13.13 \% \\
& \% \mathrm{O}=\frac{1 \times(16.00 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=34.73 \% \\
& 52.14 \%+13.13 \%+34.73 \%=100.0 \%
\end{aligned}
$$

Examples

What is the mass of H, Cl in 10 g HCl ?

What is \% composition of the elements C in $\mathrm{CH}_{3} \mathrm{COOH}$?

What is \% composition of the elements in $25.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$ if $\mathrm{m}_{\mathrm{H}}=0.5142 \mathrm{~g}$ and $\mathrm{m}_{\mathrm{O}}=16.3239 \mathrm{~g}$ and $\mathrm{m}_{\mathrm{S}}=8.1619 \mathrm{~g}$?

Percent Composition and Empirical Formulas

Mass
percent

Convert to grams and divide by molar mass

Determine the empirical formula of a compound that has the following percent composition by mass: K 24.75, Mn 34.77, O 40.51 percent.
Moles of each element
$\underset{\downarrow}{\downarrow} \begin{aligned} & \text { Divide by the smanlest } \\ & \text { number of moles }\end{aligned} n_{\mathrm{K}}=24.75 \mathrm{~g} K \times \frac{1 \mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{gK}}=0.6330 \mathrm{~mol} \mathrm{~K}$

Mole ratios
of elements
$\downarrow \begin{aligned} & \text { Change to } \\ & \text { integer subscripts }\end{aligned}$
Empirical
formula
$n_{\text {Mn }}=34.77 \mathrm{gAnn} \times \frac{1 \mathrm{~mol} \mathrm{Mn}}{54.94-\mathrm{g} \mathrm{Mn}}=0.6329 \mathrm{~mol} \mathrm{Mn}$

$$
n_{0}=40.51 \mathrm{~g} \sigma \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=2.532 \mathrm{~mol} \mathrm{O}
$$

Percent Composition and Empirical Formulas

$$
\begin{gathered}
n_{\mathrm{K}}=0.6330, n_{\mathrm{Mn}}=0.6329 . n_{\mathrm{O}}=2.532 \\
\mathrm{~K}: \frac{0.6330}{0.6329} \approx 1.0 \\
\mathrm{Mn}: \frac{0.6329}{0.6329}=1.0 \\
\mathrm{O}: \frac{2.532}{0.6329} \approx 4.0 \\
\mathrm{KMnO}_{4}
\end{gathered}
$$

EXAMPLE 3.9

Ascorbic acid (vitamin C) cures scurvy. It is composed of 40.92 percent carbon (C), 4.58 percent hydrogen (H), and 54.50 percent oxygen (O) by mass. Determine its empirical formula.

Solution

$$
\begin{gathered}
n_{\mathrm{C}}=40.92 \mathrm{gC} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{gC}}=3.407 \mathrm{~mol} \mathrm{C} \\
n_{\mathrm{H}}=4.58 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{gH}}=4.54 \mathrm{~mol} \mathrm{H} \\
n_{\mathrm{O}}=54.50 \mathrm{~g} \theta
\end{gathered} \begin{gathered}
\frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=3.406 \mathrm{~mol} \mathrm{O} \\
\mathrm{C}: \frac{3.407}{3.406} \approx 1 \quad \mathrm{H}: \frac{4.54}{3.406}=1.33 \quad \mathrm{O}: \frac{3.406}{3.406}=1 \\
1.33 \times 1=1.33 \\
1.33 \times 2=2.66 \\
1.33 \times 3=3.99 \approx 4
\end{gathered}
$$

Because 1.33×3 gives us an integer (4), we multiply all the subscripts by 3 and obtain $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$ as the empirical formula for ascorbic acid.

EXAMPLE 3.10

Chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$ is a principal mineral of copper. Calculate the number of kilograms of Cu in $3.71 \times 10^{3} \mathrm{~kg}$ of chalcopyrite.
Strategy Chalcopyrite is composed of Cu, Fe, and S . The mass due to Cu is based on its percentage by mass in the compound. How do we calculate mass percent of an element?

Solution The molar masses of Cu and CuFeS_{2} are 63.55 g and 183.5 g , respectively. The mass percent of Cu is therefore

$$
\begin{aligned}
\% \mathrm{Cu} & =\frac{\text { molar mass of } \mathrm{Cu}}{\text { molar mass of } \mathrm{CuFeS}_{2}} \times 100 \% \\
& =\frac{63.55 \mathrm{~g}}{183.5 \mathrm{~g}} \times 100 \%=34.63 \%
\end{aligned}
$$

To calculate the mass of Cu in a $3.71 \times 10^{3} \mathrm{~kg}$ sample of CuFeS_{2}, we need to convert the percentage to a fraction (that is, convert 34.63 percent to $34.63 / 100$, or 0.3463) and write

$$
\text { mass of } \mathrm{Cu} \text { in } \mathrm{CuFeS}_{2}=0.3463 \times\left(3.71 \times 10^{3} \mathrm{~kg}\right)=1.28 \times 10^{3} \mathrm{~kg}
$$

$\mathrm{g} \mathrm{CO}_{2} \longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \longrightarrow \mathrm{molC} \longrightarrow \mathrm{g} \mathrm{C} \quad 6.0 \mathrm{~g} \mathrm{C}=0.5 \mathrm{~mol} \mathrm{C}$ $\mathrm{g} \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{mol} \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{molH} \longrightarrow \mathrm{g} \mathrm{H} \quad 1.5 \mathrm{~g} \mathrm{H}=1.5 \mathrm{~mol} \mathrm{H}$ g of $\mathrm{O}=\mathrm{g}$ of sample $-(\mathrm{g}$ of $\mathrm{C}+\mathrm{g}$ of H$) \quad 4.0 \mathrm{~g} \mathrm{O}=0.25 \mathrm{~mol} \mathrm{O}$

Empirical formula $\mathrm{C}_{0.5} \mathrm{H}_{1.5} \mathrm{O}_{0.25}$
Divide by smallest subscript (0.25)
Empirical formula $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

Molecular Formulas

Molecular weight of the compound should be known

$$
\mathrm{X}=\frac{\mathcal{M}_{\text {actual }}}{\mathcal{M}_{\text {empirical }}} \quad \begin{aligned}
& \text { Multiply the empirical formula by the } \\
& \text { integer } \mathrm{x}
\end{aligned}
$$

A compound has empirical formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}$ but its molecular weight is $324 \mathrm{~g} / \mathrm{mol}$!
$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~S}_{4} \mathrm{O}_{2}$
Calculate the number of grams of Al in 371 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$? 196.5 g

EXAMPLE 3.11

A sample of a compound contains 1.52 g of nitrogen (N) and 3.47 g of oxygen (O). The molar mass of this compound is between 90 g and 95 g . Determine the molecular formula and the accurate molar mass of the compound.
Solution We are given grams of N and O . Use molar mass as a conversion factor to convert grams to moles of each element. Let n represent the number of moles of each element. We write

$$
\begin{aligned}
& n_{\mathrm{N}}=1.52 \mathrm{gN} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{gN}}=0.108 \mathrm{~mol} \mathrm{~N} \\
& n_{\mathrm{O}}=3.47 \mathrm{~g} \theta \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \theta}=0.217 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Thus, we arrive at the formula $\mathrm{N}_{0.108} \mathrm{O}_{0.217}$, which gives the identity and the ratios of atoms present. However, chemical formulas are written with whole numbers. Try to convert to whole numbers by dividing the subscripts by the smaller subscript (0.108). After rounding off, we obtain NO_{2} as the empirical formula.

$$
\text { empirical molar mass }=14.01 \mathrm{~g}+2(16.00 \mathrm{~g})=46.01 \mathrm{~g}
$$

Next, we determine the ratio between the molar mass and the empirical molar mass

$$
\frac{\text { molar mass }}{\text { empirical molar mass }}=\frac{90 \mathrm{~g}}{46.01 \mathrm{~g}} \approx 2
$$

The molar mass is twice the empirical molar mass. This means that there are two NO_{2} units in each molecule of the compound, and the molecular formula is $\left(\mathrm{NO}_{2}\right)_{2}$ or $\mathrm{N}_{2} \mathrm{O}_{4}$.

The actual molar mass of the compound is two times the empirical molar mass, that is, $2(46.01 \mathrm{~g})$ or 92.02 g , which is between 90 g and 95 g .

Chemical Reaction

A process in which one or more substances is changed into one or more new substances is a chemical reaction
A chemical equation uses chemical symbols to show what happens during a chemical reaction reactants \longrightarrow products

3 ways of representing the reaction of H_{2} with O_{2} to form $\mathrm{H}_{2} \mathrm{O}$ Two hydrogen molecules + One oxygen molecule \longrightarrow Two water molecules

How to "Read" Chemical Equations

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

2 atoms $\mathrm{Mg}+1$ molecule O_{2} makes 2 formula units MgO
2 moles $\mathrm{Mg}+1$ mole $_{2}$ makes 2 moles MgO
48.6 grams $\mathrm{Mg}+32.0$ grams O_{2} makes 80.6 g MgO

NOT

2 grams $\mathrm{Mg}+1$ gram O_{2} makes 2 g MgO

Balancing Chemical Equations

1. Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.
Ethane reacts with oxygen to form carbon dioxide and water

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

2. Change the numbers in front of the formulas (coefficients) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6} \quad \text { NOT } \mathrm{C}_{4} \mathrm{H}_{12}
$$

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.

Balancing Chemical Equations

4. Balance those elements that appear in two or more reactants or products.

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \underset{\uparrow}{2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}} \quad \text { multiply } \mathrm{O}_{2} \text { by } \frac{7}{2} \\
\begin{array}{c}
\text { oxygen } \\
\text { on left }
\end{array} \\
\begin{array}{c}
\text { (oxygen }+3 \text { oxygen }=7 \text { oxygen } \\
(2 \times 2) \quad(3 \times 1)
\end{array} \quad \text { on right }
\end{gathered}
$$

$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad$ remove fraction multiply both sides by 2
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Balancing Chemical Equations

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Reactants

$$
\begin{gathered}
4 \mathrm{C}(2 \times 2) \\
12 \mathrm{H}(2 \times 6) \\
14 \mathrm{O}(7 \times 2)
\end{gathered}
$$

Products

$$
\begin{gathered}
4 \mathrm{C} \\
12 \mathrm{H}(6 \times 2) \\
14 \mathrm{O}(4 \times 2+6)
\end{gathered}
$$

Amounts of Reactants and Products

1. Write balanced chemical equation
2. Convert quantities of known substances into moles
3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity
4. Convert moles of sought quantity into desired units

Methanol burns in air according to the equation

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?
grams $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{H}_{2} \mathrm{O} \longrightarrow$ grams $\mathrm{H}_{2} \mathrm{O}$

molar mass	coefficients	molar mass
$\mathrm{CH}_{3} \mathrm{OH}$	chemical equation	$\mathrm{H}_{2} \mathrm{O}$

209 gCH

$235 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Limiting Reagent

Reactant used up first in the reaction

$$
2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}
$$

NO is the limiting reagent
O_{2} is the excess reagent

After reaction is complete

In one process, 124 g of Al are reacted with 601 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed.
$\mathrm{g} \mathrm{Al} \longrightarrow$ mol Al \longrightarrow mol Fe $2 \mathrm{O}_{3}$ needed $\longrightarrow \mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ needed OR
$\mathrm{g} \mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow$ mol Al needed $\longrightarrow \mathrm{g} \mathrm{Al}$ needed

Start with $124 \mathrm{~g} \mathrm{Al} \longrightarrow$ need $367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
Have more $\mathrm{Fe}_{2} \mathrm{O}_{3}(601 \mathrm{~g})$ so Al is the limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$
\begin{gathered}
\mathrm{gAl} \longrightarrow \mathrm{~mol} \mathrm{Al} \longrightarrow \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{gAl}_{2} \mathrm{O}_{3} \\
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
\end{gathered}
$$

$124 \mathrm{gAT} \times \frac{1 \text { mot } \mathrm{AT}}{26.98 \mathrm{gAT}} \times \frac{1 \text { mot } \mathrm{Al}_{2} \mathrm{O}_{3}}{2 \mathrm{mot} \mathrm{AT}^{2}} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{molAt}_{2} \mathrm{O}_{3}}=234.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
At this point, all the Al is consumed and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ remains in excess.

Another method

AI is the least thus it is the limiting reagent

Use limiting reagent (AI) to calculate amount of product that can be formed.

$$
\begin{gathered}
\mathrm{g} \mathrm{Al} \longrightarrow \mathrm{~mol} \mathrm{Al} \longrightarrow \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \\
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe} \\
124 \text { _gAt } \times \frac{1 \text { mot AT }}{26.98 \mathrm{AAT}} \times \frac{1 \text { mol } \mathrm{Al}_{2} \mathrm{O}_{3}}{2 \text { mot } \mathrm{AT}} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \text { mol } \mathrm{At}_{2} \mathrm{O}_{3}}=234.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \\
\text { At this point, all the } \mathrm{Al} \text { is consumed } \\
\text { and } \mathrm{Fe}_{2} \mathrm{O}_{3} \text { remains in excess. }
\end{gathered}
$$

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

$$
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%
$$

Calculate \% yield if 803 g of CaO is produced?

EXAMPLE 3.16

Titanium is a strong, lightweight, corrosion-resistant metal that is used in rockets, aircraft, jet engines, and bicycle frames. It is prepared by the reaction of titanium(IV) chloride with molten magnesium between $950^{\circ} \mathrm{C}$ and $1150^{\circ} \mathrm{C}$:

$$
\mathrm{TiCl}_{4}(g)+2 \mathrm{Mg}(l) \longrightarrow \mathrm{Ti}(s)+2 \mathrm{MgCl}_{2}(l)
$$

In a certain industrial operation $3.54 \times 10^{7} \mathrm{~g}$ of TiCl_{4} are reacted with $1.13 \times 10^{7} \mathrm{~g}$ of Mg . (a) Calculate the theoretical yield of Ti in grams. (b) Calculate the percent yield if $7.91 \times 10^{6} \mathrm{~g}$ of Ti are actually obtained.
Solution Carry out two separate calculations to see which of the two reactants is the limiting reagent. First, starting with $3.54 \times 10^{7} \mathrm{~g}$ of TiCl_{4}, calculate the number of moles of Ti that could be produced if all the TiCl_{4} reacted. The conversions are

$$
\begin{aligned}
& \text { grams of } \mathrm{TiCl}_{4} \longrightarrow \text { moles of } \mathrm{TiCl}_{4} \longrightarrow \text { moles of Ti } \\
& \text { moles of } \mathrm{Ti}=3.54 \times 10^{7} \mathrm{~g} \mathrm{TiCl}_{4} \times \frac{1 \mathrm{~mol} \mathrm{TiCl}_{4}}{189.7 \mathrm{~g} \mathrm{TiCl}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{TiCl}_{4}} \\
&=1.87 \times 10^{5} \mathrm{~mol} \mathrm{Ti}
\end{aligned}
$$

Next, we calculate the number of moles of Ti formed from $1.13 \times 10^{7} \mathrm{~g}$ of Mg . The conversion steps are

$$
\begin{aligned}
& \text { grams of } \mathrm{Mg} \longrightarrow \text { moles of } \mathrm{Mg} \longrightarrow \text { moles of } \mathrm{Ti} \\
& \text { moles of } \mathrm{Ti}=1.13 \times 10^{7} \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{1 \mathrm{~mol} \mathrm{Ti}}{2 \mathrm{~mol} \mathrm{Mg}} \\
& =2.32 \times 10^{5} \mathrm{~mol} \mathrm{Ti}
\end{aligned}
$$

Therefore, TiCl_{4} is the limiting reagent because it produces a smaller amount of Ti . The mass of Ti formed is

$$
1.87 \times 10^{5} \mathrm{~mol} \mathrm{Ti} \times \frac{47.88 \mathrm{~g} \mathrm{Ti}}{1 \mathrm{~mol} \mathrm{Ti}}=8.95 \times 10^{6} \mathrm{~g} \mathrm{Ti} \quad \text { (Continued) }
$$

Solution The percent yield is given by

$$
\begin{aligned}
\% \text { yield } & =\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \% \\
& =\frac{7.91 \times 10^{6} \mathrm{~g}}{8.95 \times 10^{6} \mathrm{~g}} \times 100 \% \\
& =88.4 \%
\end{aligned}
$$

