Chemistry:
 The Study of Change

Chapter 1

Defining Chemistry

Chemistry is the study of matter and the changes it undergoes
Matter is anything that occupies space and has mass.

A substance is a form of matter that has a definite composition and distinct properties.

liquid nitrogen

gold ingots

silicon crystals

Mixtures

A mixture is a combination of two or more substances in which the substances retain their distinct identities.

1. Homogenous mixture-composition of the mixture is the same throughout.
soft drink, milk, solder
2. Heterogeneous mixture - composition is not uniform throughout.

Physical means can be used to separate a mixture into its pure components.

Elements

An element is a substance that cannot be separated into simpler substances by chemical means.

- 114 elements have been identified
- 82 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon, sulfur

- 32 elements have been created by scientists technetium, americium, seaborgium

TABLE 1.1 Some Common Elements and Their Symbols

Name	Symbol	Name	Symbol	Name	Symbol
Aluminum	Al	Fluorine	F	Oxygen	O
Arsenic	As	Gold	Au	Phosphorus	P
Barium	Ba	Hydrogen	H	Platinum	Pt
Bismuth	Bi	Iodine	I	Potassium	K
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	C	Magnesium	Mg	Sodium	Na
Chlorine	Cl	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Co	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	N	Zinc	Zn

Compounds

A compound is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by chemical means.

lithium fluoride

quartz

dry ice (carbon dioxide)

Classifications of Matter

Chemistry: A Science for the 21 ${ }^{\text {st }}$ Century .

Health and Medicine

- Sanitation systems
- Surgery with anesthesia
- Vaccines and antibiotics
- Gene therapy

Energy and the Environment

- Fossil fuels
- Solar energy
- Nuclear energy

Chemistry: A Science for the $\mathbf{2 1}^{\text {st }}$ Century ${ }_{2}$

Materials and Technology

- Polymers, ceramics, liquid crystals
- Room-temperature superconductors?
- Molecular computing?

Food and Agriculture

- Genetically modified crops
- "Natural" pesticides
- Specialized fertilizers

The Scientific Method

The scientific method is a systematic approach to research.

A hypothesis is a tentative explanation for a set of observations.

The Scientific Method ${ }_{2}$

A law is a concise statement of a relationship between phenomena that is always the same under the same conditions.

Force $=$ mass \times acceleration

A theory is a unifying principle that explains a body of facts and/or those laws that are based on them.

Atomic Theory

International System of Units (SI)

TABLE 1.2 SI Base Units

Base Quantity

Length
Mass
Time
Electrical current
Temperature
Amount of substance
Luminous intensity

Name of Unit
meter m
kilogram kg
second
ampere
kelvin K
mole mol
candela

TABLE 1.3 Prefixes Used with SI Units

Prefix	Symbol	Meaning	Example
tera-	T	$1,000,000,000,000$, or 10^{12}	1 terameter $(\mathrm{Tm})=1 \times 10^{12} \mathrm{~m}$
giga-	G	$1,000,000,000$, or 10^{9}	1 gigameter $(\mathrm{Gm})=1 \times 10^{9} \mathrm{~m}$
mega-	M	$1,000,000$, or 10^{6}	1 megameter $(\mathrm{Mm})=1 \times 10^{6} \mathrm{~m}$
kilo-	k	1,000, or 10^{3}	1 kilometer $(\mathrm{km})=1 \times 10^{3} \mathrm{~m}$
deci-	d	$1 / 10$, or 10^{-1}	1 decimeter $(\mathrm{dm})=0.1 \mathrm{~m}$
centi-	c	$1 / 100$, or 10^{-2}	1 centimeter $(\mathrm{cm})=0.01 \mathrm{~m}$
milli-	m	$1 / 1,000$, or 10^{-3}	1 millimeter $(\mathrm{mm})=0.001 \mathrm{~m}$
micro-	μ	$1 / 1,000,000$, or 10^{-6}	1 micrometer $(\mu \mathrm{m})=1 \times 10^{-6} \mathrm{~m}$
nano-	n	$1 / 1,000,000,000$, or 10^{-9}	1 nanometer $(\mathrm{nm})=1 \times 10^{-9} \mathrm{~m}$
pico-	p	$1 / 1,000,000,000,000$, or 10^{-12}	1 picometer $(\mathrm{pm})=1 \times 10^{-12} \mathrm{~m}$

Volume

Volume - SI derived unit for volume is cubic meter $\left(\mathrm{m}^{3}\right)$

$$
\begin{aligned}
& 1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3} \\
& 1 \mathrm{dm}^{3}=\left(1 \times 10^{-1} \mathrm{~m}\right)^{3}=1 \times 10^{-3} \mathrm{~m}^{3} \\
& 1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
\end{aligned}
$$

$$
1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
$$

Density

The density of a substance is its mass per unit volume (the volumetric mass).

SI derived unit for density is $\mathbf{k g} / \mathbf{m}^{\mathbf{3}}$
$1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{mL}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
density $=\frac{\text { mass }}{\text { volume }}$
$d=\frac{m}{V}$

TABLE 1.4
Densities of Some
Substances at $25^{\circ} \mathrm{C}$

Substance	Density $\left(\mathbf{g} / \mathbf{c m}^{\mathbf{3}}\right)$
Air* *	0.001
Ethanol	0.79
Water	1.00
Mercury	13.6
Table salt	2.2
Iron	7.9
Gold	19.3
Osmium	
*Measured at 1 atmosphere.	
'Osmium (Os) is the densest element	
known.	

A piece of platinum metal with a density of 21.5 $\mathrm{g} / \mathrm{cm}^{3}$ has a volume of $4.49 \mathrm{~cm}^{3}$. What is its mass?

$$
\begin{aligned}
d & =\frac{m}{V} \\
m & =d \times V \\
& =21.5 \mathrm{~g} / \mathrm{cmA}^{3} \times 4.49 \mathrm{~cm}^{3}=96.5 \mathrm{~g}
\end{aligned}
$$

EXAMPLE 1.1

Gold is a precious metal that is chemically unreactive. It is used mainly in jewelry, dentistry, and electronic devices. A piece of gold ingot with a mass of 301 g has a volume of $15.6 \mathrm{~cm}^{3}$. Calculate the density of gold.

Solution We are given the mass and volume and asked to calculate the density. Therefore, from Equation (1.1), we write

$$
\begin{aligned}
d & =\frac{m}{V} \\
& =\frac{301 \mathrm{~g}}{15.6 \mathrm{~cm}^{3}} \\
& =19.3 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

EXAMPLE 1.2

The density of mercury, the only metal that is a liquid at room temperature, is $13.6 \mathrm{~g} / \mathrm{mL}$. Calculate the mass of 5.50 mL of the liquid.

Solution We are given the density and volume of a liquid and asked to calculate the mass of the liquid. We rearrange Equation (1.1) to give

$$
\begin{aligned}
m & =d \times V \\
& =13.6 \frac{\mathrm{~g}}{\mathrm{mt}} \times 5.50 \mathrm{mt} \\
& =74.8 \mathrm{~g}
\end{aligned}
$$

Practice Exercise The density of sulfuric acid in a certain car battery is $1.41 \mathrm{~g} / \mathrm{mL}$. Calculate the mass of 242 mL of the liquid.

A Comparison of Temperature Scales

$$
\begin{gathered}
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15 \\
273 \mathrm{~K}=0^{\circ} \mathrm{C} \\
373 \mathrm{~K}=100^{\circ} \mathrm{C} \\
{ }^{0} \mathrm{~F}=\frac{9}{5} \times{ }^{\circ} \mathrm{C}+32 \\
32^{\circ} \mathrm{F}=0^{\circ} \mathrm{C} \\
212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}
\end{gathered}
$$

Convert $172.9^{\circ} \mathrm{F}$ to degrees Celsius.

$$
\begin{aligned}
{ }^{0} \mathrm{~F} & =\frac{9}{5} \times{ }^{0} \mathrm{C}+32 \\
{ }^{0} \mathrm{~F}-32 & =\frac{9}{5} \times{ }^{0} \mathrm{C} \\
\frac{5}{9} \times\left({ }^{\circ} \mathrm{F}-32\right) & ={ }^{\circ} \mathrm{C} \\
{ }^{\circ} \mathrm{C} & =\frac{5}{9} \times\left({ }^{0} \mathrm{~F}-32\right) \\
{ }^{\circ} \mathrm{C} & =\frac{5}{9} \times(172.9-32)=\underline{\mathbf{7 8 . 3}}
\end{aligned}
$$

EXAMPLE 1.3

(a) Solder is an alloy made of tin and lead that is used in electronic circuits. A certain solder has a melting point of $224^{\circ} \mathrm{C}$. What is its melting point in degrees Fahrenheit? (b) Helium has the lowest boiling point of all the elements at $-452^{\circ} \mathrm{F}$. Convert this temperature to degrees Celsius. (c) Mercury, the only metal that exists as a liquid at room temperature, melts at $-38.9^{\circ} \mathrm{C}$. Convert its melting point to kelvins.

Solution These three parts require that we carry out temperature conversions, so we need Equations (1.2), (1.3), and (1.4). Keep in mind that the lowest temperature on the Kelvin scale is zero $(0 \mathrm{~K})$; therefore, it can never be negative.
(a) This conversion is carried out by writing

$$
\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \times\left(224^{\circ} \mathrm{C}\right)+32^{\circ} \mathrm{F}=435^{\circ} \mathrm{F}
$$

Scientific Notation

- The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000,000

$$
6.022 \times 10^{23}
$$

- The mass of a single carbon atom in grams: 0.0000000000000000000000199

$$
1.99 \times 10^{-23}
$$

Scientific Notation 2

568.762
\leftarrow move decimal left

$$
\begin{aligned}
& n>0 \\
& 568.762=5.68762 \times 10^{2}
\end{aligned}
$$

0.00000772
\rightarrow move decimal right
$\mathrm{n}<0$
$0.00000772=7.72 \times 10^{-6}$

- Addition or Subtraction

1. Write each quantity with the same exponent n
2. Combine N_{1} and N_{2}
3. The exponent, \boldsymbol{n}, remains the same

$$
4.31 \times 10^{4}+3.9 \times 10^{3}=
$$

$$
4.31 \times 10^{4}+0.39 \times 10^{4}=
$$

$$
4.70 \times 10^{4}
$$

Scientific Notation ${ }_{3}$

- Multiplication

1. Multiply N_{1} and N_{2}
2. Add exponents n_{1} and n_{2}

$$
\begin{array}{r}
\left(4.0 \times 10^{-5}\right) \times\left(7.0 \times 10^{3}\right)= \\
(4.0 \times 7.0) \times\left(10^{-5+3}\right)= \\
28 \times 10^{-2}= \\
2.8 \times 10^{-1}
\end{array}
$$

Division

1. Divide N_{1} and N_{2}
2. Subtract exponents n_{1} and n_{2}

$$
8.5 \times 10^{4} \div 5.0 \times 10^{9}=
$$

$$
(8.5 \div 5.0) \times 10^{4-9}=
$$

1.7×10^{-5}

Significant Figures

- Any digit that is not zero is significant $1.234 \mathrm{~kg} \quad 4$ significant figures
- Zeros between nonzero digits are significant $606 \mathrm{~m} \quad 3$ significant figures
- Zeros to the left of the first nonzero digit are not significant $0.08 \mathrm{~L} \quad 1$ significant figure
- If a number is greater than 1 , then all zeros to the right of the decimal point are significant
2.0 mg

2 significant figures

- If a number is less than 1 , then only the zeros that are at the end and in the middle of the number are significant $0.00420 \mathrm{~g} \quad 3$ significant figures
(1) Express 568.762 in scientific notation: $568.762=5.68762 \times 10^{2}$
Note that the decimal point is moved to the left by two places and $n=2$
(2) Express 0.00000772 in scientific notation:

$$
0.00000772=7.72 \times 10^{-6}
$$

Here the decimal point is moved to the right by six places and $n=-6$

EXAMPLE 1.4

Determine the number of significant figures in the following measurements: (a) 478 cm , (b) 6.01 g , (c) 0.825 m , (d) 0.043 kg , (e) 1.310×10^{22} atoms, (f) 7000 mL .

Solution (a) Three, because each digit is a nonzero digit. (b) Three, because zeros between nonzero digits are significant. (c) Three, because zeros to the left of the first nonzero digit do not count as significant figures. (d) Two. Same reason as in (c). (e) Four, because the number is greater than one so all the zeros written to the right of the decimal point count as significant figures. (f) This is an ambiguous case. The number of significant figures may be four $\left(7.000 \times 10^{3}\right)$, three $\left(7.00 \times 10^{3}\right)$, two $\left(7.0 \times 10^{3}\right)$, or one $\left(7 \times 10^{3}\right)$. This example illustrates why scientific notation must be used to show the proper number of significant figures.

Significant Figures 2

- Addition or Subtraction
- The answer cannot have more digits to the right of the decimal point than any of the original numbers.
89.332
$+1.1 \leftarrow$ one significant figure after decimal point
$90.432 \leftarrow$ roundoff to 90.4
3.70
$\underline{-2.9133} \leftarrow$ two significant figure after decimal point
$0.7867 \leftarrow$ roundoff to 0.79

Significant Figures ${ }_{3}$

- Multiplication or Division
- The number of significant figures in the result is set by the original number that has the smallest number of significant figures.

4.51 \uparrow	$\times 3.6666=16.536366=16.5$
3 sig figs	S round to
	3 sig figs
6.8	$\div 112.04=0.0606926=0.061$
\uparrow	\uparrow
2 sig figs	round to
	2 sig figs

Significant Figures 4

Exact Numbers
Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures.

The average of three measured lengths: $6.64,6.68$ and 6.70 ?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67
$$

Because 3 is an exact number

EXAMPLE 1.5

Carry out the following arithmetic operations to the correct number of significant figures: (a) $11,254.1 \mathrm{~g}+0.1983 \mathrm{~g}$, (b) $66.59 \mathrm{~L}-3.113 \mathrm{~L}$, (c) $8.16 \mathrm{~m} \times 5.1355$, (d) $0.0154 \mathrm{~kg} \div 88.3 \mathrm{~mL}$, (e) $2.64 \times 10^{3} \mathrm{~cm}+3.27 \times 10^{2} \mathrm{~cm}$.

Solution In addition and subtraction, the number of decimal places in the answer is determined by the number having the lowest number of decimal places. In multiplication and division, the significant number of the answer is determined by the number having the smallest number of significant figures.
(a) $11,254.1 \mathrm{~g}$

$+\quad 0.1983 \mathrm{~g}$

$11,254.2983 \mathrm{~g} \longleftarrow$ round off to $11,254.3 \mathrm{~g}$
(b) $\quad 66.59 \mathrm{~L}$

- 3.113 L
$63.477 \mathrm{~L} \longleftarrow$ round off to 63.48 L
(c) $8.16 \mathrm{~m} \times 5.1355=41.90568 \mathrm{~m} \longleftarrow$ round off to 41.9 m
(d) $\frac{0.0154 \mathrm{~kg}}{88.3 \mathrm{~mL}}=0.000174405436 \mathrm{~kg} / \mathrm{mL} \longleftarrow$ round off to $0.000174 \mathrm{~kg} / \mathrm{mL}$ or $1.74 \times 10^{-4} \mathrm{~kg} / \mathrm{mL}$
(e) First we change $3.27 \times 10^{2} \mathrm{~cm}$ to $0.327 \times 10^{3} \mathrm{~cm}$ and then carry out the addition $(2.64 \mathrm{~cm}+0.327 \mathrm{~cm}) \times 10^{3}$. Following the procedure in (a), we find the answer is $2.97 \times 10^{3} \mathrm{~cm}$.

Dimensional Analysis Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.
given quantity \times conversion factor $=$ desired quantity

$$
\text { given unit } \times \frac{\text { desired unit }}{\text { given unit }}=\text { desired unit }
$$

EXAMPLE 1.6

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg) ? $(1 \mathrm{lb}=453.6 \mathrm{~g}$.

Strategy The problem can be stated as

$$
? \mathrm{mg}=0.0833 \mathrm{lb}
$$

The relationship between pounds and grams is given in the problem. This relationship will enable conversion from pounds to grams. A metric conversion is then needed to convert grams to milligrams ($1 \mathrm{mg}=1 \times 10^{-3} \mathrm{~g}$). Arrange the appropriate conversion factors so that pounds and grams cancel and the unit milligrams is obtained in your answer.

Solution The sequence of conversions is

$$
\text { pounds } \longrightarrow \text { grams } \longrightarrow \text { milligrams }
$$

Using the following conversion factors

$$
\frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \text { and } \frac{1 \mathrm{mg}}{1 \times 10^{-3} \mathrm{~g}}
$$

we obtain the answer in one step:

$$
? \mathrm{mg}=0.0833 \mathrm{lb} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{1 \mathrm{mg}}{1 \times 10^{-3} \mathrm{~g}}=3.78 \times 10^{4} \mathrm{mg}
$$

EXAMPLE 1.7

An average adult has 5.2 L of blood. What is the volume of blood in m^{3} ?
Strategy The problem can be stated as

$$
? \mathrm{~m}^{3}=5.2 \mathrm{~L}
$$

How many conversion factors are needed for this problem? Recall that $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$ and $1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$.

Solution We need two conversion factors here: one to convert liters to cm^{3} and one to convert centimeters to meters:

$$
\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}} \text { and } \frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}
$$

Because the second conversion factor deals with length (cm and m) and we want volume here, it must therefore be cubed to give

$$
\frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}} \times \frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}=\left(\frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}\right)^{3}
$$

This means that $1 \mathrm{~cm}^{3}=1 \times 10^{-6} \mathrm{~m}^{3}$. Now we can write

$$
? \mathrm{~m}^{3}=5.2 \mathrm{~L} \times \frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~L}} \times\left(\frac{1 \times 10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}\right)^{3}=5.2 \times 10^{-3} \mathrm{~m}^{3}
$$

