CHEM 101+103 FIRST SEMISTER 1431-1432H SECONDEXAM SOLUTIONS

1. A piece of 155.0 g aluminum metal at 120° C was placed in a constant pressure calorimeter of negligible heat capacity containing 300.0 g of water at 20° C. Calculate the final temperature of the system (the aluminum metal and the water) in °C; given the specific heat of aluminum metal = 0.90 J/g °C, and that of water = 4.184 J/g °C.

A) 24	B)	26	C)	28	D)	30	
			SOLUTIO	DN			
$\mathbf{q}_1 = \mathbf{q}_2$							
$(\mathbf{m} \times \mathbf{C}_{\mathbf{s}} \times \Delta \mathbf{t})_1 =$	= (m ×	$\mathbf{C}_{s} \times \Delta t$	2				
$155 \times 0.9 \times (t_2 \cdot t_2)$	$-120)_1 =$	300 ×	$4.184 \times (t_2 - 1)$	20) ₂			
t₂ -= 30 °C							

2. A 2.2 g sample of quinone C₆H₄O₂ was burned in a bomb calorimeter for which the total heat capacity is 7850 J/°C. The temperature of the calorimeter increased from 23.44°C to 30.57°C. What is the molar heat of combustion of quinone (in kJ/mole)?

A) -2750 B) -2760 C) -2785 D) -2790
SOLUTION

$$n = \frac{m}{M} = \frac{2.2}{108} = 0.0203 \text{ mol}$$

 $\Delta T = T_1 - T2 = 30.57 - 23.44 = 7.13 \,^{\circ}\text{C}$
 $q = -C \,\Delta T = 7850 \times 7.13 = -55970 \,\text{J}/0.0203 \,\text{mol}$
 $q = \frac{27571}{0.0203} = 2757114 \,\text{J/mol} = 2757 \,\text{kJ/mol}$

3. Hydrazine, $N_2H_4(l)$ is used as a rocket fuel. The thermochemical equation for the combustion of hydrazine is:

 $N_2H_4(L) + O_2(g) \rightarrow N_2(g) + 2H_2O(L)$ $\Delta H^{\circ}_{comb} = 662 \text{ kJ}$ How many grams of hydrazine are required to obtain 20654 kJ of heat energy?

A) 800	B)	900	C)	1000	D)	1100
			SOLUTIO	DN		
$M_{C_2H_4} = 32 \text{ g/H}$	mol					
32 g N ₂ H ₄ pro	duces 662	2 kJ				
m _{C2H4} pro	duces 206	645 kJ				
$m_{C_2H_4} = \frac{20654}{662}$	$\frac{\times 32}{2} = 998$.4 g				

4. From the enthalpies of the following reactions:

$2\mathrm{HF}(\mathrm{g}) \rightarrow \mathrm{H}_2(\mathrm{g}) + \mathrm{F}_2(\mathrm{g})$	$\Delta H = 537 \text{ kJ}$
$2C(gr) + 2H_2(g) \rightarrow C_2H_4(g)$	$\Delta H = 52 \text{ kJ}$
$C(gr) + 2F_2(g) \rightarrow CF_4(g)$	$\Delta H = -680 \text{ kJ}$
Calculate (in kJ) ΔH for the following reaction:	
$C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$	

A) +2174	B)	-2174 C)	-2298	D)	-2486	
		SO	LUTION	I		
$C_2H_4(g) \rightarrow 2C($	$s) + 2H_2$	(g)	$\Delta H =$	662 kJ		
$2C(s) + 4F_2(g) -$	→ 2CF ₄ (g	g)	$\Delta H =$	1360 kJ		
$2H_2(g) + 2F_2(g)$	$\rightarrow 4 \mathrm{HF}$	(g)	$\Delta H =$	<u>1074 kJ</u>		
$\bar{C_2H_4(g)} + \bar{6F_2(g)}$	$\overline{g} \rightarrow 2C$	$F_4(g) + 4HF$	$\Delta H =$	2486 kJ		

5. Given ΔH_{f}° , NH₃(g) = -46 kJ/mol. Calculate (in kJ) the change in internal energy, DE^o, for the following reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

A) -51	B)	-41	C)	-87	D)	-97
		S	OLUTIO	Ν		
$\Delta H_{f}^{\circ}, NH_{3}(g) = 2 \times$	64 =	- 92 kJ/ 2 r	nol			
$\Delta \mathbf{E} = \Delta \mathbf{H}^{\circ} - \mathbf{RT} \Delta$	(Δn_g)					
$\Delta E = -92 - \frac{8.314}{1000}$	× 298	\times -2 = 87.4	kJ			

6. The solubility of nitrogen gas in water at 25°C and its partial pressure at 0.76 atm is 5.2×10⁻⁴ mol/L. What is the partial pressure of nitrogen (in atm) at which its solubility in water is 1.71×10⁻³ mol/L at 25°C?

A) 2.7 B) 2.5 C) 2.3 D) 2.1
SOLUTION

$$\frac{C_1}{C_2} = \frac{P_1}{P_2}, P_2 = \frac{C_2 \times P_1}{C_1} = \frac{1.71 \times 10^{-3} \times 076}{5.2 \times 10^{-4}} = 2.5 \text{ atm}$$

7. Benzene, C₆H₆, and toluene, C₇H₈, form ideal solution that has a total vapor pressure of 1.0 atm. What is the mole fraction of benzene in this solution, knowing that the vapor pressure of pure benzene is 1.326 atm and that of pure toluene is 0.532 atm? (all vapor pressures given are measured at exactly the same temperature).

A) 0.56 B) 0.59 C) 0.62 D) 0.64
SOLUTION

$$P_T = 1 = X_1P_1 + X_2P_2 = \{X_1P_1\} + \{1 - X_1\}P_2 = \{X_1 \times 10326\} + \{(1 - X_1) \times 0.532\}$$

 $X_1 = 0.59$

8. A solution containing 10.0 g of CaCl₂ (an electrolyte) in 100.0 g of water freezes at -4.1°C. What is the vant Hoff factor of this solution? (K_f water = 1.86 °C/m).

A) 2.85	B)	2.68	C)	2.59	D)	2.45
			SOLUTIO	DN		
$\Delta T_f = i \times (\frac{K_f \times n}{2})$	$\frac{n_2 \times 1000}{2}$).	$4.1 = i \times$	$\left(\frac{1.86 \times 10 \times 1}{100000000000000000000000000000000000$	$\frac{1000}{100}$), i = 2.4	45	
· · M	$_2 \times m_1$		110.98 ×10	00		

9. A solution prepared from 100.0 g of non-volatile non-electrolyte solute in 5.5 mole of toluene (C₇H₈) has a vapor pressure of 0.161 atm at 60°C. What is the molecular weight (in g/mole) of the solute knowing that the vapor pressure of pure toluene at 60°C is 0.184 atm?

A) 127.3	B)	132.5	C)	145.6	D)	154.8
			SOLUTIC	N		
$P_{solvent} = 0.161$	= X _{solvent} I	P ₁ P [°] _{solvent} =	= X _{solvent} × (0.1840, X _{sol}	vent = 0.875	
$X_{solvent} = \frac{n_s}{n_{solvent}}$	olvent + n _{solute} ,	$0.875 = \frac{1}{5.5}$	$\frac{5.5}{+n_{solute}}$, I	$n_{solute} = 0.78$	857 mol	
$\mathbf{M}_{\text{solute}} = \frac{\mathbf{m}_{\text{solute}}}{\mathbf{n}_{\text{solute}}}$	$-=\frac{100}{0.7857}$	= 127.3 g/ı	nol			

10. The molar mass of hemoglobin (a non-electrolyte) is 6.8×10^4 g/mole. What is the osmotic pressure (in mmHg) at 27°C of a solution of 8.0 g hemoglobin in 200 mL of water?

A) 9.0	B)	11.0	C)	13.0	D)	14.0
			SOLUTIO	DN		
$\Pi \times V = \frac{m}{M} \times$	R × T					
$\Pi \times \frac{200}{1000} = \frac{1}{6.3}$	$\frac{8}{8\times10^4}\times0.0$	821R × 3	00, Π = 0.01	45 atm = 1	1 mmHg	

11. For the hypothetical reaction

		A + 3	$B \rightarrow 2C$			
the rate of app	pearance of	f C given by ($\frac{\Delta[\mathbf{C}]}{\Delta \mathbf{t}}$) may be a	also expresse	ed as:	
A) $+\frac{3\Delta[B]}{2\Delta t}$	B)	$\frac{3\Delta[B]}{2\Delta t}$	C)	$-\frac{2\Delta[B]}{3\Delta t}$	D)	+
$\frac{2\Delta[B]}{3\Delta t}$						
		SOI	LUTION			
$-\frac{\Delta[A]}{\Delta t} = -\frac{\Delta[B]}{3\Delta t} = -\Delta[$	$+\frac{\Delta[C]}{2\Delta t}, -\frac{\Delta[C]}{\Delta t}$	$= -\frac{2\Delta[A]}{\Delta t} = -\frac{2}{\Delta t}$	2Δ[C] 3Δt			

12. The data in the table below were obtained for the reaction:

 $2NO + H_2 \rightarrow N_2O + H_2O$

Exp.	$[NO]_{o}(M)$	$[H_2]_0$ (M)	Initial rate (M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

the rate law for this reaction is: rate =

A)	$k[NO]^2$	[H ₂]	B)	$k[NO] [H_2]^2$
C)	$k[NO]^2$	$\left[\mathrm{H}_{2}\right]^{2}$	D)	k[NO] ²

$SOLUTION$ $rate = k[NO]^{x}[H_{2}]^{2}$
$\frac{\text{rate}_3}{\text{rate}_1} = \frac{k [\text{NO}_2]_3^x [\text{H}_2]_3^x}{k [\text{NO}_2]_4^x [\text{H}_2]_4^x} = \frac{25.47}{2.83} = (\frac{0.819}{608})^x, 9 = 3^x, x = 2$
$\frac{\text{rate}_1}{\text{rate}_2} = \frac{k \left[\text{NO}_2 \right]_2^y [\text{H}_2]_2^y}{1 \left[\text{NO}_2 \right]_2^y [\text{H}_2]_2^y} = \frac{2.83}{2.22} = \left(\frac{1.526}{2.242} \right)^y, 1 = 2^y, y = 0$
rate ₁ $k [NO_2]_1 [H_2]_1^2$ 2.83 (0.763) rate = $k [NO]^2$

13. A compound decomposes by a first-order process. If 25% of the compound decomposes in 61.0 minutes, what is the half life (in minutes) of this decomposition reaction?

A) 142 B) 147 C) 152 D) 160
SOLUTION

$$\ln \frac{[A]_0}{[A]_1} = kt, \ln \frac{100}{75} = k \times 61, k = 4.7 \times 10^{-3} \text{ min}^{-1}$$

 $t_{0.5} = \frac{\ln 2}{k} = \frac{0.693}{4.7 \times 10^{-3}} = 147 \text{ min}$

14. The isomerization of cyclopropane to form propene follow a first-order kinetics. At 700 K, 10% of a sample of cyclopropane is isomerized to propene in 170 minutes. How many minutes are required for 35% of a sample of cyclopropane to change to propene at 700 K?

A) 695 B) 675 C) 625 D) 595
SOLUTION

$$\ln \frac{[A]_0}{[A]_1} = kt, \ln \frac{100}{90} = k \times 170, k = 6.2 \times 10^{-4} \text{ min}^{-1}$$

 $t = \frac{\ln \frac{100}{65}}{k} = \frac{0.693}{6.2 \times 10^{-4}} = 694.8 \text{ min}$

15. What is the root-mean-square speed of a neon Ne atom (in m/s) at 27°C?

A) 450	B)	498	C)	585	D) 609
SOLUTION					
$\ln \frac{k_2}{k_1} = \frac{E_a}{R} Ea - (\frac{T_2 - T_1}{T_1 \times T_2}), \ln \frac{5.5 \times 10^{-2}}{4.3 \times 10^{-2}} = \frac{E_a}{8.314 \times 10^3} - (\frac{503 - 472}{472 \times 503}), E_a = 162.28 \text{ kJ}$ k × 170, k = 6.2× 10 ⁻⁴ min ⁻¹					