CHEM 101+103 SECOND SEMISTER 1431-1432H FIRST EXAM SOLUTINS

1. The number of hydrogen " H^{\prime} " atoms present in 6.20 g of table sugar " $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ " is:
A) 2.4×10^{23}
B)
2.6×10^{23}
C) $\quad 2.7 \times 10^{23}$
D) 2.9×10^{23}
SOLUTION
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{6.2}{342}=0.018 \mathrm{~mol}$
$1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ contains 22 mol H
$0.018 \mathrm{~mol} \mathrm{C} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ contains $\mathrm{n} \mathbf{m o l ~ H}$
$\mathrm{n}=\frac{22 \times 0.081}{1}=0.399 \mathrm{~mol}$
$\mathrm{N}=\mathrm{N} \times \mathrm{N}_{\mathrm{A}}=0.399 \times 6.0221^{23}=2.4 \times 10^{23}$ atom
2. The mass (in g) of sodium " Na " present in 30.0 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is:
A) 12.2
B) 11.8
C) 10.5
D) $\quad 9.7$

SOLUTION

$1 \mathrm{~mol} \quad \mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 2 mol Na
$\frac{30}{140}=0.21 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$ contains 0.42 mol Na
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=0.24 \times 23=9.66 \mathrm{~g}$
3. Copper " Cu " is usually added to gold "Au" to obtain a hard alloy suitable for making jewelry. A 24.0 g piece of such jewelry contains $5.70 \times 10^{\mathbf{2 2}}$ atom of Cu . The percentage by mass of gold in this jewelry is:
A) 72.72%
B)
74.94%
C)
76.85\%
D) 78.75%

SOLUTION
$\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{A}}} \times 100=\frac{5.7 \times 10^{22}}{6.022 \times 10^{23}}=0.095 \mathrm{~mol}$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=0.095 \times 63.54=6.02 \mathrm{~g}$
$\mathbf{m}_{\mathrm{Au}}=\mathbf{m}_{\text {total }}-\mathrm{m}_{\mathrm{Cu}}=\mathbf{2 4 - 6 . 0 2}=17.98 \mathrm{~g}$
$\mathrm{Au} \%=\frac{\mathrm{m}_{\mathrm{Au}}}{\mathrm{m}_{\text {total }}} \times 100=\frac{17.98}{24} \times 100=74.95 \%$
4. The empirical formula of a certain pesticide which has the percentage by mass composition of $19.36 \% \mathrm{Ca}, \mathbf{3 4 . 2 6 \%} \mathrm{Cl}$ and $\mathbf{4 6 . 3 8 \%} \mathrm{O}$ is:
A) $\mathrm{CaCl}_{2} \mathrm{O}_{3}$
B)
$\mathrm{CaCl}_{2} \mathrm{O}_{4}$
C) $\quad \mathrm{CaCl}_{2} \mathrm{O}_{6}$
D) $\quad \mathrm{CaCl}_{3} \mathrm{O}_{4}$


```
\frac{19.36}{40}:\frac{34.26}{35.45}:\frac{46.38}{16}
0.484 : 0.966 : 2.899
    " (% 2 % %
```

5. A metal " M " reacts with oxygen to give $\mathrm{M}_{2} \mathrm{O}_{3}$ metal oxide. If 9.6 g of oxygen combines with 10.8 g of this metal, the atomic mass (in a.m.u.) of this metal is:
A) 27
B) 45
C) 51
D) 55

6. $\mathrm{GeF}_{3} \mathrm{H}$ is formed from GeH_{4} and GeF_{4} in the combination reaction:

$$
\mathrm{GeH}_{4}+3 \mathrm{GeF}_{4} \rightarrow 4 \mathrm{GeF}_{3} \mathrm{H}
$$

If the reaction yield is $\mathbf{9 2 . 6 \%}$, the numbers of moles of GeF_{4} needed to produce 8.0 moles of $\mathrm{GeF}_{3} \mathrm{H}$ are:
A) $\mathbf{6 . 1 8}$
B) $\quad 6.48$
C) $\quad 6.78$
D) $\quad 6.98$
yield $\%=\frac{\text { actual yield }}{\text { theoritical yield }}=\mathbf{9 2 . 6}=\frac{8}{\text { theoritical yield }} \times 100$
theoretical yield $=8.6393 \mathrm{~mol}$
$\mathrm{GeH}_{4}+3 \mathrm{GeF}_{4} \rightarrow 4 \mathrm{GeF}_{3} \mathrm{H}$
$1 \mathrm{~mol} \quad 3 \mathrm{~mol} \quad 4 \mathrm{~mol}$ n $\quad 8.6393 \mathrm{~mol}$
$\mathrm{n}=\frac{3 \times 8.6393}{4}=6.48 \mathrm{mo}$
7. According to the following reaction:

$$
2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}
$$

The maximum mass of $\mathrm{SO}_{3}(\mathrm{in} \mathrm{g})$ that can be produced by the reaction of 8.0 g of sulfur, S , with 10.0 g of oxygen ${ }^{\prime} \mathrm{O}_{2}$ " gas is:
A) $\mathbf{1 5 . 2}$
A) 15.2
B) $\mathbf{1 7 . 6}$
C) $\quad 16.7$
D) 18.4

B)	17.6 C)	
		SOL
2S	+	$3 \mathrm{O}_{2} \rightarrow$
2 mol		3 mol
$\frac{8}{3}=0.25 \mathrm{mo}$	$\frac{10}{32}=0.3125 \mathrm{~mol}$	
$\frac{8}{32}=0.25 \mathrm{mo}$	$\begin{aligned} & 32 \\ & 0.3125 \end{aligned}=0.01042$	
$\frac{0,25}{2}=0.125$		

O_{2} is the limiting reactant
$3 \mathrm{~mol} \mathrm{O}_{2}$ produce $2 \mathrm{~mol} \mathrm{SO} \mathrm{S}_{2}$
$0.3125 \mathrm{~mol} \mathrm{O}_{2}$ produce $\mathrm{n} \mathrm{mol} \mathrm{SO} \mathbf{H}_{2}$
$\mathrm{n}=\frac{0.3125 \times 2}{3}=0.2083 \mathrm{~mol}, \quad \mathrm{~m} \times \mathrm{n} \mathrm{M}=\mathbf{0 . 2 0 8 3} \times \mathbf{8 0}=16.7 \mathrm{~g}$
8. The volume (in mL) of 0.251 M potassium iodide "KI" solution that contains 13.5 g KI is:
A) 385
B) $\mathbf{3 6 8}$
C) 346
D) $\mathbf{3 2 4}$
$\mathrm{V}(\mathrm{L})=\frac{\mathrm{n}_{\text {solute }}}{\text { molarity }}=\frac{\frac{\mathrm{m}}{\mathrm{M}}}{0.251}=\frac{\frac{13.5}{166}}{0.251}=0.324 \mathrm{~L}=324 \mathrm{~mL}$
9. The molality " m " of a 25% by mass of glucose " $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ " solution is:
A) 1.85
B) $\mathbf{1 . 7 5}$
C) $\quad 2.25$
D) $\quad 2.15$
molality $=\frac{n_{\text {solute }}}{m_{\text {solvent }}(\mathrm{kg})}=\frac{\frac{\mathrm{m}}{\mathrm{M}}}{100-25}=\frac{\frac{25}{180}}{75}=1.85$ molal
10. The number of moles of NH_{3} gas present in 50 L cylinder at $31.5^{\circ} \mathrm{C}$ and a pressure equals 20.0 atm is:
A) 40
B) 42
C) 45
D) $\mathbf{5 0}$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{20 \times 50}{0.0821 \times 304.5}=40 \mathrm{~mol}$
11. 18.39 g of Freon gas occupies 3 L at STP. Therefore, the molar mass of this gas is:
A) 142.6
B) $\quad 137.4$
C) $\quad 132.8$
D) $\quad 128.7$
$\mathrm{M}=\frac{\mathrm{mRT}}{\mathrm{PV}}=\frac{18.39 \times 0.0821 \times 273}{1 \times 3}=137.4 \mathrm{~g} / \mathrm{mol}$
12. The density (in g.L ${ }^{-1}$) of $\mathrm{N}_{2} \mathrm{O}_{5}$ gas at $33^{\circ} \mathrm{C}$ and 1.0 atm pressure is:
A) 4.3
B) $\quad 3.9$
C) 3.6
D) 3.2

SOLUTION
$\mathrm{d}=\frac{\mathrm{PM}}{\mathrm{RT}}=\frac{1 \times 108}{0.0821 \times 306}=4.3 \mathrm{~g} / \mathrm{L}$
13. The volume (in L) of oxygen gas ${ } \mathrm{O}_{2}$ " at $153^{\circ} \mathrm{C}$ and 0.820 atm that can be produced by the decomposition of 22.4 g of KClO_{3} is:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

A) 10.5 L
B) $\quad 10.8 \mathrm{~L}$
C) $\quad 11.2 \mathrm{~L}$
D) $\quad 11.7 \mathrm{~L}$

14. Two identical balloons are filled at the same temperature and pressure. One contains Argon gas "Ar" and the other contains Helium "He" gas. The argon gas leaks out of its balloon at a rate of $\mathbf{1 5 0} \mathbf{~ m L}$ per hour. Therefore, the rate of leakage (in mL per hour) of helium gas of its balloon is:
A) 1497
B) $\mathbf{8 4 8}$
C) 474
D) 424
$\frac{r_{\text {Ar }}}{r_{\mathrm{He}}}=\sqrt{ } \frac{\mathrm{M}_{\mathrm{He}}}{\mathrm{M}_{\mathrm{Ar}}} \quad, \quad \frac{150}{\mathrm{r}_{\mathrm{He}}}=\sqrt{ } \frac{4}{40}=\quad, \quad \mathrm{r}_{\mathrm{He}}=474 \mathrm{~mL} / \mathrm{hr}$
15. At STP, the average kinetic energy of the molecules of \mathbf{N}_{2} gas, $\mathrm{O}_{\mathbf{2}}$ gas and $\mathbf{C l}_{2}$ gas is:
A) equal for the three gases.
B) the greatest for the \mathbf{N}_{2} gas molecules.
C) the greatest for the O_{2} gas molecules.
D) the greatest for the Cl_{2} gas molecules.
SOLUTION

Because T is the same, KE is the same.

