CHEM 101+103 FIRST SEMISTER 1431-1432H FIRST EXAM SOLUTIONS

1. What is the mass (in grams) of 1.1×10^{22} atom of gold (Au)?

A) 2.2	B)	2.8	C)	3.6	D)	3.9		
SOLUTION								
$\mathbf{m} = \mathbf{n} \times \mathbf{M} = \frac{1}{2}$	$\frac{N}{N_A} \times M = \frac{1}{6.9}$	1×10^{22} 1×10^{23}	$\times 197 = 3.6$ §	g				

2. How many hydrogen atoms are in 5.37 g of (NH₄)₃PO₄?

A) 1.8×10 ²³	B)	1.8×10 ²⁴						
C) 2.2×10^{23}	D)	2.6×10^{23}						
	SO	LUTION						
1 mol	(NH ₄) ₃ PO ₄ contains	12 mol H						
$\frac{5.37}{149}$ 0.036 mol	(NH ₄) ₃ PO ₄ contains	n mol H						
$N n = \frac{0.036 \times 12}{1} = 0.5326 mol$								
$N = n \times N_A = 0.5326 \times 6.022 \times 10^{23} = 2.6 \times 10^{23}$ atom								

3. How many moles are in 1.0 kg of pure table sugar C₁₂H₂₂O₁₁?

A) 2.92 B) 3.32 C) 3.64 D) 4.16
SOLUTION

$$n = \frac{m}{M} = \frac{1000}{342} = 2.92 \text{ mol}$$

4. The percentage by mass of nitrogen in Bi(NO₃)₃ is:

A)	7.36%	B)	10.64%	C)	8.54%	D)	9.75%
			SC	OLUTI	ON		
N =	mass of elemen	$\frac{dt}{dt} =$	$\frac{42}{395} \times 100 = 10$.6%			

5. The combustion of 1.031 g of an organic compound that contains only carbon, hydrogen and oxygen produced 2.265 g of CO₂ and 1.236 g of H₂O. What is the empirical formula of this compound?

A)
$$C_2H_6O$$
 B) C_3H_5O C) C_3H_8O D) CH_2O
SOLUTION
 $C_{mass} \frac{M_{CO_2}}{M_C} \times m_{CO_2} = \frac{12}{44} \times 2.265 = 0.6177 \text{ g}$
 $H_{mass} \frac{M_H}{M_{H_2O}} \times m_{H_2O} = \frac{2}{18} \times 10236 = 0.1373 \text{ g}$
 $C_{mass} = M_{compound} - (C_{mass} + H_{mass}) = 1.031 - (0.6177 + 0.1373) = 0.276 \text{ g}$
 $C : H : O$
 $\frac{0.6177}{12} : \frac{0.1373}{1} : \frac{0.276}{16}$
 $0.0515 : 0.1373 : 0.01725$

١

3	: 8	:	1			
	C ₃ H ₈ O					

6. An element "X" combines with oxygen to form a compound with formula XO₂. If 6.7 g of this element combines with 3.9 g of oxygen, what is the atomic mass of this element (in a.m.u.)?

A)	55	B)	40	C)	65	D)	48	
				SOLUTI	ON			
			Χ	+ O ₂	$\rightarrow XO$	2		
		1	mol	1mo	l			
			n _x	$\frac{3.9}{32} = 0.12$	22 mol			
M _x	$=\frac{m_x}{n_x}=\frac{6.7}{0.122}=2$	55 A	MU					

7. What is the theoretically yield (in grams) of copper Cu when 18.1 g of NH₃ gas and 90.4 g solid CuO were allowed to react according to:
 2NH₃(g) + 3CuO(s) → 3Cu(s) + N₂(g) + 3H₂O(g)

A)	48. 7	B)	63.6	C)	68.5	D)	72.2		
				SOLUT	ION				
		2NH ₃ (g	g) + 3CuO	$(s) \rightarrow 3C$	$u(s) + N_2(g)$	$) + 3H_2O(g)$			
	2 mol 3 mol								
	$\frac{18.1}{100} = 1.065$ mol $\frac{90.4}{100} = 1.136$ mol								
		17 1.065		79. 1.136	55				
		2	= 0.532	3	= 0.379				
Cu	O is the	limiting read	etant						
		$2NH_3(g) + 3$	3CuO(s)	\rightarrow	3Cu(s) +]	$N_2(g) + 3H_2O$	(g)		
			3 mol		3 mol				
		1	.136 mol		1.136 mol				
m _C	$m_{Cu} = n_{Cu} \times M_{Cu} = 1.136 \times 63.55 = 72.2 \text{ g}$								

8. What is the percentage yield of lead (Pb) if 50.00 kg of PbO are reduced by heating with excess carbon and 40.75 kg of lead are produced according to: PbO(s) + C(s) → Pb(L) + CO(g)

A) 75.88% B) 87.79% C) 90.32% D) 94.65%
SOLUTION
PbO(s) + C(s)
$$\rightarrow$$
 Pb(L) + CO(g)
1 mol 1 mol
 $\frac{150000}{223.2} = 224 \text{ mol}$ 224 mol
 $\frac{1.065}{2} = 0.532$ $\frac{1.136}{3} = 0.379$
actual yield $= \frac{m_{Pb}}{M_{Pb}} = \frac{40750}{207.2} = 196.7 \text{ mol}$
yield percentage $= \frac{actual yield}{teoretical yield} \times 100 = \frac{196.7}{224} \times 100 = 87.8\%$

9. How many milliliter of water must be added to a stock solution of 6.0M HNO₃ in order to prepare 900 mL of 0.5 M HNO₃ by dilution?

A)	825	B)	850	C)	780	D)	800	
				SOLUTIO	DN			
	$\mathbf{M}_1 \times \mathbf{V}_1 = \mathbf{M}_2$	$\times V_2$						
	$\mathbf{V}_1 = \frac{\mathbf{M}_2 \times \mathbf{M}_2}{\mathbf{M}_1} =$	$\frac{0.5\times900}{6} =$	75 mL					
	$\mathbf{V}_{\mathrm{H}_2\mathrm{O}} = \mathbf{V}_2 - \mathbf{V}_1$	1 = 900 - 7	75 = 825 n	nL				

10. What is the percent H₂SO₄ by mass in a 6.0 M H₂SO₄ solution that has a density of 1.34 g/mL?

A) 27.83% B) 32.74% C) 43.92% D) 78.25%
SOLUTION

$$m_{H_20} = n_{H_20} \times M_{H_20} = 6 \times 18 = 588 \text{ g}$$

 $m_{solution} = V_{solution} \times d_{solution} = 1000 \times 1.34 = 1340 \text{ g}$
 $H_2SO_4\% = \frac{m_{H_2SO_4}}{m_{solution}} \times 100 = \frac{588}{1340} \times 100 = 43.88\%$

11. A sample of Cl₂ gas occupies a volume of 5.0 L at 25°C and 15.0 atm. What volume (in L) will this sample occupy at STP?

A) 68.7 B) 52.8 C) 40.6 D) 28.4
SOLUTION

$$M_1 \times V_1 = M_2 \times V_2$$

 $\frac{P_1 \times V_1}{T_1} = \frac{P_2 \times V_2}{T_2}, V_2 = \frac{P_1 \times V_1 \times T_2}{P_2 \times T_1} = \frac{15 \times 5 \times 273}{1 \times 298} = 68.7 \text{ L}$

12. A tennis ball has an internal volume of 145 m-L and contains 0.366 g of N₂ gas. What will be the pressure (in atm) inside the ball at 25°C?

A) 1.8 B) 2.0 C) 2.2 D) 2.4
SOLUTION

$$M_1 \times V_1 = M_2 \times V_2$$

 $P = \frac{n \times R \times T}{V} = \frac{\frac{m}{M} \times R \times T}{V} = \frac{\frac{0.366}{28} \times 0.0821 \times 298}{0.145} = 2.2 \text{ atm}$

13. What volume of oxygen gas at STP would be needed to react completely with 20.1 g of aluminum (Al) according to:

$$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

A) 10.8 L B) 12.5 L C) 14.3 L D) 15.5 L
SOLUTION

$$4Al(s) + 3O_2(s) \rightarrow 2Al_2O_3$$

 $4 \mod 3 \mod 10.8 \mod 10.599 \mod 10^{-10}$

V	$\underline{n \times R \times T}$	$-\frac{\mathrm{m}}{\mathrm{M}} \times \mathrm{R} \times \mathrm{T}$	$-\frac{0.599 \times 0.0821 \times 273}{-12.25}$	
•	P	- v	$-\frac{1}{1}$	

14. What is the molar mass (in g.mol⁻¹) of a certain gas if its density is 1.57 g/L at 25°C and 1.2 atm?

A) 71	B)	44	C) 32	D)	28				
SOLUTION									
PM = dRT, M	$=\frac{\mathbf{d}\times\mathbf{R}\times\mathbf{T}}{\mathbf{P}}$	= 1.57 >	$\frac{0.0821 \times 298}{1.2} = 32 \text{ g/L}$						

15. What is the root-mean-square speed of a neon Ne atom (in m/s) at 27°C?

A) 450 B) 498 C) 585 D) 609
SOLUTION
$$\sqrt{\bar{U}^2} = \sqrt{\frac{3RT}{M}} \sqrt{\frac{3 \times 8.314 \times 300}{0.02018}} = 608.9 \text{ m/s}$$