CHEM 101+103 FIRST SEMISTER 1431-1432H FIRST EXAM SOLUTIONS

1. What is the mass (in grams) of 1.1×10^{22} atom of gold (Au)?
A) 2.2
B) $\quad 2.8$
C) 3.6
D) $\quad 3.9$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=\frac{\mathrm{N}}{\mathrm{N}_{\mathrm{A}}} \times \mathrm{M}=\frac{1.1 \times 10^{22}}{6.022 \times 10^{23}} \times 197=3.6 \mathrm{~g}$
2. How many hydrogen atoms are in 5.37 g of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$?
A) 1.8×10^{23}
B) $\quad 1.8 \times 10^{24}$
C) 2.2×10^{23}
D) $\quad 2.6 \times 10^{23}$

$$
\begin{array}{|cc}
\hline 1 \mathrm{~mol} & \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \text { contains } 12 \mathrm{~mol} \mathrm{H} \\
\hline \frac{5.37}{149} 0.036 \mathrm{~mol} & \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \text { contains } \mathrm{n} \mathrm{~mol} \mathrm{H} \\
\mathrm{~N}=\frac{0.036 \times 12}{1}=0.5326 \mathrm{~mol} \\
\mathrm{~N}=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}=0.5326 \times 6.022 \times 10^{23}=2.6 \times 10^{23} \text { atom } \\
\hline
\end{array}
$$

3. How many moles are in 1.0 kg of pure table sugar $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
A) 2.92
B) $\quad 3.32$
C) $\quad 3.64$
D) $\mathbf{4 . 1 6}$

SOLUTION
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1000}{342}=2.92 \mathrm{~mol}$
4. The percentage by mass of nitrogen in $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ is:
A) 7.36%
B) 10.64%
C) 8.54%
D) 9.75%
$\mathrm{N}=\frac{\text { mass of element }}{\text { mass of compound }}=\frac{42}{395} \times 100=\mathbf{1 0 . 6 \%}$
5. The combustion of 1.031 g of an organic compound that contains only carbon, hydrogen and oxygen produced $2.265 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$ and $1.236 \mathrm{~g} \mathrm{of}_{\mathbf{H}}^{2} \mathrm{O}$. What is the empirical formula of this compound?
A) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
B) $\quad \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$
C) $\quad \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
D) $\quad \mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{\text {mass }} \frac{\mathrm{M}_{\mathrm{CO}_{2}}}{\mathrm{M}_{\mathrm{C}}} \times \mathrm{m}_{\mathrm{CO}_{2}}=\frac{12}{44} \times 2.265=0.6177 \mathrm{~g}$
$\mathrm{H}_{\text {mass }} \frac{\mathrm{M}_{\mathrm{H}}}{\mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}} \times \mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=\frac{2}{18} \times 10236=0.1373 \mathrm{~g}$
$\mathrm{C}_{\text {mass }}=\mathrm{M}_{\text {compound }}-\left(\mathrm{C}_{\text {mass }}+_{-} \mathrm{H}_{\text {mass }}\right)=1.031-(0.6177+0.1373)=0.276 \mathrm{~g}$
C : H: O
$\frac{0.6177}{12}: \frac{0.1373}{1}: \frac{0.276}{16}$
$0.0515: 0.1373: 0.01725$

```
3 : 8 : 1
    C}\mp@subsup{\textrm{C}}{3}{}\mp@subsup{\textrm{H}}{8}{}\textrm{O
```

6. An element " X " combines with oxygen to form a compound with formula XO_{2}. If 6.7 g of this element combines with 3.9 g of oxygen, what is the atomic mass of this element (in a.m.u.)?
A) $\mathbf{5 5}$
B) 40
C) 65
D) 48

7. What is the theoretically yield (in grams) of copper Cu when 18.1 g of NH_{3} gas and 90.4 g solid CuO were allowed to react according to:

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{~s}) \rightarrow 3 \mathrm{Cu}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A) 48.7
B) $\mathbf{6 3 . 6}$
C) $\quad 68.5$
D) $\quad 72.2$

$$
\begin{array}{ll}
2 \mathrm{NH}_{3}(\mathrm{~g}) & +3 \mathrm{CuO}(\mathrm{~s}) \rightarrow 3 \mathrm{Cu}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
2 \mathrm{~mol} & 3 \mathrm{~mol} \\
\frac{18.1}{17}=1.065 \mathrm{~mol} & \frac{90.4}{79.55}=1.136 \mathrm{~mol} \\
\frac{1.065}{2}=0.532 & \frac{1.136}{3}=0.379
\end{array}
$$

CuO is the limiting reactant

$$
\begin{array}{ccc}
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{~s}) & \rightarrow & 3 \mathrm{Cu}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
3 \mathrm{~mol} & & 3 \mathrm{~mol} \\
1.136 \mathrm{~mol} & & 1.136 \mathrm{~mol} \\
\mathrm{~m}_{\mathrm{Cu}}=\mathrm{n}_{\mathrm{Cu}} \times \mathrm{M}_{\mathrm{Cu}}=1.136 \times 63.55=72.2 \mathrm{~g} & \\
\hline
\end{array}
$$

8. What is the percentage yield of lead (Pb) if 50.00 kg of PbO are reduced by heating with excess carbon and 40.75 kg of lead are produced according to:

$$
\mathrm{PbO}(\mathrm{~s})+\mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{Pb}(\mathrm{~L})+\mathrm{CO}(\mathrm{~g})
$$

A) $\mathbf{7 5 . 8 8} \%$
B) 87.79%
C) $\quad 90.32 \%$
D) 94.65%
SOLUTION

$$
\begin{array}{ccc}
\mathrm{PbO}(\mathrm{~s}) & +\mathrm{C}(\mathrm{~s}) & \rightarrow \\
1 \mathrm{mb}(\mathrm{~L}) \\
1 \mathrm{~mol}
\end{array}+\mathrm{CO}(\mathrm{~g})
$$

actual yield $=\frac{\mathrm{m}_{\mathrm{Pb}}}{\mathrm{M}_{\mathrm{Pb}}}=\frac{40750}{207.2}=196.7 \mathrm{~mol}$
yield percentage $=\frac{\text { actual yield }}{\text { teoretical yield }} \times 100=\frac{196.7}{224} \times 100=87.8 \%$
9. How many milliliter of water must be added to a stock solution of 6.0 M HNO 3 in order to prepare $\mathbf{9 0 0} \mathbf{~ m L}$ of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ by dilution?

A)	825	B)	850	C)	780	D)	800
SOLUTION							
$\begin{aligned} & M_{1} \times V_{1}=M_{2} \times V_{2} \\ & V_{1}=\frac{M_{2} \times M_{2}}{M_{1}}=\frac{0.5 \times 900}{6}=75 \mathrm{~mL} \\ & V_{H_{2} O}=V_{2}-V_{1}=900-75=825 \mathrm{~mL} \end{aligned}$							

10. What is the percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass in a $6.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density of $1.34 \mathrm{~g} / \mathrm{mL}$?
A) $\mathbf{2 7 . 8 3 \%}$
B) 32.74%
C) 43.92%
D) 78.25%
$\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}} \times \mathrm{M}_{\mathrm{H}_{2} \mathrm{O}}=\mathbf{6} \times \mathbf{1 8}=588 \mathrm{~g}$
$\mathrm{m}_{\text {solution }}=\mathrm{V}_{\text {solution }} \times \mathrm{d}_{\text {solution }}=1000 \times 1.34=1340 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \%=\frac{\mathrm{m}_{\mathrm{H}_{2} \mathrm{SO}}^{4}}{} \mathrm{~m}_{\text {solution }} \times 100=\frac{588}{1340} \times 100=43.88 \%$
11. A sample of Cl_{2} gas occupies a volume of 5.0 L at $25^{\circ} \mathrm{C}$ and 15.0 atm . What volume (in L) will this sample occupy at STP?
A) 68.7
B) $\quad \mathbf{5 2 . 8}$
C) $\quad 40.6$
D) $\quad 28.4$
$\mathbf{M}_{1} \times \mathbf{V}_{1}=\mathbf{M}_{2} \times \mathbf{V}_{\mathbf{2}}$
$\frac{P_{1} \times V_{1}}{T_{1}}=\frac{P_{2} \times V_{2}}{T_{2}}, V_{2}=\frac{P_{1} \times V_{1} \times T_{2}}{P_{2} \times T_{1}}=\frac{15 \times 5 \times 273}{1 \times 298}=68.7 \mathrm{~L}$
12. A tennis ball has an internal volume of $145 \mathrm{~m}-\mathrm{L}$ and contains 0.366 g of \mathbf{N}_{2} gas. What will be the pressure (in atm) inside the ball at $25^{\circ} \mathrm{C}$?
A) 1.8
B) $\quad 2.0$
C) $\quad 2.2$
D) $\quad 2.4$

$$
\begin{aligned}
& \quad \text { SOLUTION } \\
& \mathbf{M}_{1} \times V_{1}=M_{2} \times V_{2} \\
& P=\frac{\mathrm{n} \times \mathrm{R} \times \mathrm{T}}{\mathrm{~V}}=\frac{\frac{\mathrm{m}}{\mathrm{M}} \times \mathrm{R} \times \mathrm{T}}{\mathrm{~V}}=\frac{\frac{0.366}{28} \times 0.0821 \times 298}{0.145}=2.2 \mathrm{~atm}
\end{aligned}
$$

13. What volume of oxygen gas at STP would be needed to react completely with 20.1 g of aluminum (Al) according to:

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A) 10.8 L
B) $\quad 12.5 \mathrm{~L}$
C) $\quad 14.3 \mathrm{~L}$
D) $\quad 15.5 \mathrm{~L}$

	SOLUTION	
$4 \mathrm{Al}(\mathrm{s})$		
4 mol	+	$3 \mathrm{O}_{2}(\mathrm{~s})$
$\frac{20.1}{26.98}=0.745 \mathrm{~mol}$		$\rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{n}=\frac{0.745 \times 3}{4}=0.599 \mathrm{~mol}$	n	

$$
\mathrm{V}=\frac{\mathrm{n} \times \mathrm{R} \times \mathrm{T}}{\mathrm{P}}=\frac{\frac{\mathrm{m}}{\mathrm{M}} \times \mathrm{R} \times \mathrm{T}}{\mathrm{~V}}=\frac{0.599 \times 0.0821 \times 273}{1}=12.25 \mathrm{~L}
$$

14. What is the molar mass (in g. mol^{-1}) of a certain gas if its density is $\mathbf{1 . 5 7}$ g / L at $25^{\circ} \mathrm{C}$ and 1.2 atm ?
A) 71
B) 44
C) 32
D) 28
SOLUTION
$P M=d R T, M=\frac{d \times R \times T}{P}=\frac{1.57 \times 0.0821 \times 298}{1.2}=32 \mathrm{~g} / \mathrm{L}$
15. What is the root-mean-square speed of a neon Ne atom (in m / s) at $27^{\circ} \mathrm{C}$?
A) 450
B) 498
C) 585
D) 609
SOLUTION
$\sqrt{\overline{\mathrm{U}}^{2}}=\sqrt{\frac{3 R T}{M}} \sqrt{\frac{3 \times 8.314 \times 300}{0.02018}}=608.9 \mathrm{~m} / \mathrm{s}$
