Chapter 5

Numerical Differentiation and Integration

1. Let $f(x)=(x-1) e^{x}$ and take $h=0.01$.
(a) Calculate approximation to $f^{\prime}(2.3)$ using the two-point forward-difference formula. Also, compute the actual error and an error bound for you approximation.
(b) Solve part (a) using the two-point backward-difference formula.
two-point forward-difference formula: $\quad f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=D_{h} f\left(x_{0}\right)$.
The error bound formula $\frac{h}{2} M$, where $M=\max _{x_{0} \leq x \leq x_{1}}\left|f^{\prime \prime}(x)\right|$.
Solution: (a) Given $f(x)=(x-1) e^{x}$ and $h=0.01$, then using the two-point forward-difference formula with $x_{0}=2.3$, we have

$$
f^{\prime}(2.3) \approx \frac{f(2.3+h)-f(2.3)}{h}
$$

Then for $h=0.01$, we get

$$
\begin{aligned}
f^{\prime}(2.3) & \approx \frac{f(2.31)-f(2.3)}{0.01} \\
& \approx \frac{(2.31-1) e^{2.31}-(2.3-1) e^{2.3}}{0.01}=23.10591068
\end{aligned}
$$

The actual error is

$$
\text { Error }=f^{\prime}(2.3)-23.10591068=2.3 e^{2.3}-23.10591068=-0.16529103
$$

To find the error bound, we use the following formula

$$
E_{F}(f, h)=-\frac{h}{2} f^{\prime \prime}(\eta(x)), \quad \text { where } \quad \eta(x) \in\left(x_{0}, x_{0}+h\right)
$$

which can be written as

$$
\left|E_{F}(f, h)\right|=\left|-\frac{0.01}{2}\right|\left|f^{\prime \prime}(\eta(x))\right|, \quad \text { for } \quad \eta \in(2.3,2.31)
$$

The second derivative $f^{\prime \prime}(x)$ of the function can be found as

$$
f^{\prime}(x)=x e^{x}, \quad \text { and } \quad f^{\prime \prime}(x)=(1+x) e^{x}
$$

The value of the second derivative $f^{\prime \prime}(\eta(x))$ cannot be computed exactly because $\eta(x)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{\prime \prime}(\eta(x))\right|$. So bound $\left|f^{\prime \prime}\right|$ on $[2.3,2.31]$ can be obtain

$$
M=\max _{2.3 \leq x \leq 2.31}\left|(1+x) e^{x}\right|=33.346346
$$

at $x=2.31$. Since $\left|f^{\prime \prime}(\eta(x))\right| \leq M$, therefore, for $h=0.01$, we have

$$
\left|E_{F}(f, h)\right| \leq \frac{0.01}{2} M=0.005(33.346346)=0.16673173
$$

which is the possible maximum error in our approximation.

Chapter 5

Numerical Differentiation and Integration

two-point backward-difference formula:

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h} .
$$

(b) Using the two-point backward-difference formula with $x_{0}=2.3$, we have

$$
f^{\prime}(2.3) \approx \frac{f(2.3)-f(2.3-h)}{h}
$$

Then for $h=0.01$, we get

$$
\begin{aligned}
f^{\prime}(2.3) & \approx \frac{f(2.3)-f(2.29)}{0.01} \\
& \approx \frac{(2.3-1) e^{2.3}-(2.29-1) e^{2.29}}{0.01}=22.77675826
\end{aligned}
$$

The actual error is

$$
\text { Error }=f^{\prime}(2.3)-22.77675826=2.3 e^{2.3}-22.77675826=0.16386139
$$

To find the error bound, we use the following formula

$$
E_{F}(f, h)=-\frac{h}{2} f^{\prime \prime}(\eta(x)), \quad \text { where } \quad \eta(x) \in\left(x_{0}-h, x_{0}\right)
$$

which can be written as

$$
\left|E_{F}(f, h)\right|=\left|-\frac{0.01}{2}\right|\left|f^{\prime \prime}(\eta(x))\right|, \quad \text { for } \quad \eta \in(2.29,2.3)
$$

The second derivative $f^{\prime \prime}(x)$ of the function can be found as

$$
f^{\prime}(x)=x e^{x}, \quad \text { and } \quad f^{\prime \prime}(x)=(1+x) e^{x}
$$

The value of the second derivative $f^{\prime \prime}(\eta(x))$ cannot be computed exactly because $\eta(x)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{\prime \prime}(\eta(x))\right|$. So bound $\left|f^{\prime \prime}\right|$ on $[2.29,2.3]$ can be obtain

$$
M=\max _{2.29 \leq x \leq 2.3}\left|(1+x) e^{x}\right|=32.9148021
$$

at $x=2.3$. Since $\left|f^{\prime \prime}(\eta(x))\right| \leq M$, therefore, for $h=0.01$, we have

$$
\left|E_{F}(f, h)\right| \leq \frac{0.01}{2} M=0.005(32.9148021)=0.16457401
$$

which is the possible maximum error in our approximation.

Chapter 5

Numerical Differentiation and Integration

5. Use the three-point central-difference formula to compute the approximate value for $f^{\prime}(5)$ with $f(x)=\left(x^{2}+1\right) \ln x$, and $h=0.05$. Compute the actual error and the error bound for you approximation.

$$
\begin{aligned}
& \text { three-point central-difference formula (second-order) } \\
& f^{\prime}\left(x_{1}\right) \approx \frac{f\left(x_{1}+h\right)-f\left(x_{1}-h\right)}{2 h}=D_{h} f\left(x_{1}\right) \\
& \text { The error bound formula of central difference three-point formula } \\
& \frac{h^{2}}{6} M,
\end{aligned}
$$ where

$$
M=\max _{x_{0} \leq x \leq x_{2}}\left|f^{\prime \prime \prime}(x)\right|
$$

Solution: Given $f(x)=\left(x^{2}+1\right) \ln x$ and $x_{1}=5, h=0.05$, then using the three-point formula, we have

$$
f^{\prime}(5) \approx \frac{f(5+0.05)-f(5-0.05)}{2(0.05)}=\frac{f(5.05)-f(4.95)}{0.1}
$$

Then

$$
\begin{aligned}
f^{\prime}(5) & \approx \frac{\left[(5.05)^{2}+1\right] \ln (5.05)-\left[(4.95)^{2}+1\right] \ln (4.95)}{0.1} \\
& \approx \frac{42.917837-40.788382}{0.1}=21.294553
\end{aligned}
$$

The actual error is

$$
\text { Error }=f^{\prime}(5)-21.294553=21.294379-21.294553=-0.000174
$$

To compute the error bound for the approximation, we use the formula

$$
E_{C}(f, h)=-\frac{(0.05)^{2}}{6} f^{\prime \prime \prime}\left(\eta\left(x_{1}\right)\right), \quad \text { for } \quad \eta\left(x_{1}\right) \in(4.95,5.05)
$$

or

$$
\left|E_{C}(f, h)\right|=\left|-\frac{(0.05)^{2}}{6}\right|\left|f^{\prime \prime \prime}\left(\eta\left(x_{1}\right)\right)\right|, \quad \text { for } \quad \eta\left(x_{1}\right) \in(4.95,5.05)
$$

The third derivative $f^{\prime \prime \prime}(x)$ of the function can be found as

$$
f^{\prime}(x)=2 x \ln x+\left(x^{2}+1\right) / x, f^{\prime \prime}(x)=2 \ln x-\left(x^{2}+1\right) / x^{2}-4, f^{\prime \prime \prime}(x)=2\left(x^{2}+1\right) / x^{3}
$$

The value of the third derivative $f^{\prime \prime \prime}\left(\eta\left(x_{1}\right)\right)$ cannot be computed exactly because $\eta\left(x_{1}\right)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{\prime \prime \prime}\left(\eta\left(x_{1}\right)\right)\right|$. So bound $\left|f^{\prime \prime \prime}\right|$ on $[4.95,5.05]$ can be obtain

$$
M=\max _{4.95 \leq x \leq 5.05}\left|2\left(x^{2}+1\right) / x^{3}\right|=0.4205302
$$

at $x=4.95$. Since $\left|f^{\prime \prime}(\eta(x))\right| \leq M$, therefore, for $h=0.1$, we have

$$
\left|E_{F}(f, h)\right| \leq \frac{(0.05)^{2}}{6} M=0.00042(0.4205302)=0.000175
$$

which is the possible maximum error in our approximation.

Chapter 5

Numerical Differentiation and Integration

20. Let $f(x)=x+\ln (x+2)$, with $h=0.1$. Use the three-point formula to approximate $f^{\prime \prime}(2)$. Find error bound for your approximation and compare the actual error to the bound.
three-point central-difference formula

$$
f^{\prime \prime}\left(x_{1}\right) \approx \frac{f\left(x_{1}-h\right)-2 f\left(x_{1}\right)+f\left(x_{1}+h\right)}{h^{2}}=D_{h}^{2} f\left(x_{1}\right)
$$

Error Bound for Three Point Central Difference Formula
$\left.E_{(f)}\left|\leq \frac{h^{2}}{12} M, \quad M=\max _{a \leq x \leq b}\right| f^{(4)}(x) \right\rvert\,$
Solution: Given $f(x)=x+\ln (x+2), x_{1}=2, h=0.1$, then using three-point formula for finding the approximation of $f^{\prime \prime}(2)$, we have

$$
f^{\prime \prime}(2) \approx \frac{f(2+0.1)-2 f(2)+f(2-0.1)}{(0.1)^{2}}
$$

or

$$
\begin{aligned}
f^{\prime \prime}(2) & \approx \frac{f(2.1)-2 f(2)+f(1.9)}{0.01} \\
& \approx \frac{(2.1+\ln (4.1))-2(2+\ln (4.0))+(1.9+\ln (3.9))}{0.01} \\
& \approx \frac{3.5109870-6.7725887+3.2609766}{0.01}=-0.0625195
\end{aligned}
$$

To compute the error bound for our approximation, we use the following error formula

$$
E_{C}(f, h)=-\frac{h^{2}}{12} f^{(4)}\left(\eta\left(x_{1}\right)\right), \quad \text { for } \quad \eta\left(x_{1}\right) \in(1.9,2.1)
$$

or

$$
\left|E_{C}(f, h)\right|=\left|-\frac{h^{2}}{12}\right|\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right|, \quad \text { for } \quad \eta\left(x_{1}\right) \in(1.9,2.1)
$$

The fourth derivative of the given function at $\eta\left(x_{1}\right)$ is

$$
f^{(4)}\left(\eta\left(x_{1}\right)\right)=-6 /\left(\eta\left(x_{1}\right)+2\right)^{4}
$$

and it cannot be computed exactly because $\eta\left(x_{1}\right)$ is not known. But one can bound the error by computing the largest possible value for $\left|f^{(4)}\left(\eta\left(x_{1}\right)\right)\right|$. So bound $\left|f^{(4)}\right|$ on the interval $(1.9,2.1)$ is

$$
M=\max _{1.9 \leq x \leq 2.1}\left|-6 /(x+2)^{4}\right|=0.0259354
$$

at $x=1.9$, Thus, for $\left|f^{(4)}(\eta(x))\right| \leq M$, we have

$$
\left|E_{C}(f, h)\right| \leq \frac{h^{2}}{12} M
$$

Taking $M=0.0259354$ and $h=0.1$, we obtain

$$
\left|E_{C}(f, h)\right| \leq \frac{0.01}{12}(0.0259354)=0.0000216
$$

which is the possible maximum error in our approximation.
The actual error is

$$
\text { Error }=f^{\prime \prime}(2)+0.0625195=-0.0625000+0.0625195=0.0000195
$$

Chapter 5
 Numerical Differentiation and Integration

28. Use a suitable composite integration formula for the approximation of the integral $\int_{1}^{2} \frac{d x}{3-x}$, with $n=5$. Compute an upper bound for your approximation.

Chapter 5
 Numerical Differentiation and Integration

29. Use the composite Trapezoidal rule for the approximation of the integral $\int_{1}^{3} \frac{d x}{7-2 x}$ with $h=0.5$. Also, compute an error term.

Chapter 5
 Numerical Differentiation and Integration

30. Find the step size h so that the absolute value of the error for the composite Trapezoidal rule is less than 5×10^{-4} when it is used to approximate the integral $\int_{2}^{7} \frac{d x}{x}$.

Chapter 5
 Numerical Differentiation and Integration

35. Evaluate $\int_{0}^{1} e^{x^{2}} d x$ by the Simpson's rule choosing h small enough to guarantee five decimal accuracy. How large can h be ?
