A zone in the central building district (CBD) is projected to contain 1,525,000 ft² of residential space; 3,675,000 ft² of service establishments; and a total-retail activity floor area of 2,100,000 ft². Government and other public buildings occupy a total area of 615,000 ft². Using the data obtained in Pittsburgh, calculate the trip generation of this zone.

Land-use category	Trips per thousand square feet (From Table 8.2.1)		Area in thousand (given)	ft ²	Trips
Residential	2.4	×	1,525	=	3,660
Service	5.2	×	3,675	=	19,110
Retail	8.1	×	2,100	=	17,010
Public buildings	3.9	×	615	=	2,400
			To	otal	38,520
					person
					Trips

Number of trips = area in thousand $ft^2 \times trip$ rate

Calculate the total non-work-home-based productions of each of the zones that are expected to contain the following mixtures of households (HH):

Zone 1: Suburban

Zone 1. Sucuroun				
Persons/HH Veh/HH	0	1	2+	
1	50	150	100	
2, 3	10	500	300	
4	100	400	100	

Zone 2: Rural

20110 21 1101101					
Persons/HH Veh/HH	0	1	2+		
1	300	50	100		
2, 3	100	200	100		
4	400	300	150		

From table 8.2.3: Total Home-Based-Non-work Trip Rates

Suburban: Medium density

Sacarean Wiearam achiefy					
Persons/HH	0	1	2+		
1	0.97	1.92	2.29		
2, 3	2.54	3.49	3.86		
4	5.04	5.99	6.36		

Rural: Low density

Persons/HH Veh/HH	0	1	2+
1	0.54	1.32	1.69
2, 3	1.94	2.89	3.26
4	4.44	5.39	5.76

Product:

Zone 1

Persons/HH Veh/HH	0	1	2+
1	49	288	229
2, 3	25	1745	1158
4	504	2396	636
Total	$P_1 = 7,030 \text{ trips}$		

Zone 2

Zone z			
Persons/HH Veh/HH	0	1	2+
1	162	66	169
2, 3	194	578	326
4	1776	1617	864
Total	$P_2 = 5,752 \text{ trips}$		

A residential zone is expected to have 1500 dwelling units. For a \$12,000 average income, calculate (a) the person-trips per dwelling unit for units that own 0, 1, 2, and 3+ autos and (b) the total-trip generation by trip purpose. Use the income-auto-ownership distribution given in Fig. 8.2.5 and assume that curve C applies to all subgroups within the zone.

(a)

	(A)	(B)	(C)	(D)
Car ownership	% of HHs	# of HHs	Trip Rate	Trips
	From Curve A	$(A) \times 1500$	From Curve B	$(B) \times (C)$
0	2%	30	5.5	165
1	32%	480	12.0	5,760
2	52%	780	15.5	12,090
3+	14%	210	17.2	3,612
Total	100%	1,500		21,627

(B)

	(A)	(B)
Durnoso	% of Trips	# of Trips
Purpose	From Curve C	$(A) \times 21,627$
HB Work	19%	4,109
HB Shop	11%	2,379
HB School	14%	3,028
Non-HB	22%	4,758
HB Other	34%	7,353
Total	100%	21,627

Zone	Production	Attractiveness
1	1,000	2
2	0	5
3	2,000	1

 K_{ij}

 W_{ij}

J I	1	2	3
1	5	20	10
2	20	5	10
3	10	10	5

J I	1	2	3
1	1.1	1.5	0.8
2	0.6	1.2	0.5
3	1.0	1.4	1.3

If the calibration constant c = 1.5, apply the gravity model to calculate all interchange volumes.

Step 1: Identify production zones:

We have two production zones (I = 1, I = 3),

Step 2: Develop a skim table for each one.

$$F_{IJ} = \frac{1}{W_{IJ}^{c}}$$

$$p_{IJ} = \frac{A_{J}F_{IJ}K_{IJ}}{\sum A_{J}F_{IJ}K_{IJ}}$$

$$Q_{IJ} = P_{I}p_{IJ}$$

For I = 1, $P_1 = 1,000$

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_JF_{IJ}K_{IJ}$	рIJ	Q_{IJ}
1	2	5	0.0896	1.1	0.197	0.6432	643
2	5	20	0.0112	1.5	0.084	0.2742	274
3	1	10	0.0316	0.8	0.026	0.0826	83
				Total	0.307	1	1,000

For I = 3, $P_3 = 2,000$

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_JF_{IJ}K_{IJ}$	рIJ	Q_{IJ}
1	2	10	0.0316	1	0.0632	0.1578	316
2	5	10	0.0316	1.4	0.2213	0.5522	1,104
3	1	5	0.0894	1.3	0.1162	0.2900	580
				Total	0.4007	1	2,000

Step 3: Summarize in trip matrix.

J I	1	2	3	P_I
1	643	274	83	1,000
2	0	0	0	0
3	316	1,104	580	2,000
${A_J}^*$	959	1,378	663	(3,000)

scheme

Zone	A_J	W_{IJ}	F_{IJ}	Q_{IJ}
1	0	2		
2	400	20		
3	300	5		
4	100	5		
5	200	10		

Complete the above table given that $P_I = 1000$ trips per day, c = 2.0 and all $K_{IJ} = 1.0$.

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_{J}F_{IJ}K_{IJ}$	ры	QIJ
1	0	2	0.2500	1.0	0	0	0
2	400	20	0.0025	1.0	1	0.053	53
3	300	5	0.0400	1.0	12	0.631	631
4	100	5	0.0400	1.0	4	0.211	211
5	200	10	0.0100	1.0	2	0.105	105
				Total	19	1	1,000

Two residential zones (1 and 2) are expected to produce 6500 and 3800 person trips per day, respectively. Two non-residential zones (3 and 4) are competing for these trips. The planning commission has received a proposal to improve parts of the transportation system, which, if implemented, would affect certain interzonal impedances, W_{IJ} , as shown:

8

14

Proposal							
I	3	4					
1	10	10					
2	2	2					

Given the following additional information, calculate the effect of the proposal on the total trips attracted by the nonresidential zones.

 $F = 38W^{-1.58}$ $A_3 = 10$ $A_4 = 15$ all $K_{IJ} = 1.0$

First Choice: Do nothing:

For I = 1, $P_1 = 6,500$

2

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_J F_{IJ} K_{IJ}$	p_{IJ}	Q_{IJ}
3	10	10	1.0	1.0	10	0.53	3,445
4	15	14	0.6	1.0	9	0.47	3,055
				Total	19	1	6,500

For I = 2, $P_2 = 3,800$

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_{J}F_{IJ}K_{IJ}$	ры	QIJ
3	10	8	1.4	1.0	14	0.61	2,318
4	15	14	0.6	1.0	9	0.39	1,482
				Total	23	1	3,800

Trip matrix:

J I	3	4	P_I
1	3,445	3,055	6,500
2	2,318	1,482	3,800
${A_J}^*$	5,763	4,537	(10,300)

Second Choice: Proposal:

For I = 1, $P_1 = 6,500$

\overline{J}	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_JF_{IJ}K_{IJ}$	ры	Qıj
3	10	10	1.0	1.0	10	0.40	2,600
4	15	10	1.0	1.0	15	0.60	3,900
				Total	25	1	6,500

For I = 2, $P_2 = 3,800$

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_JF_{IJ}K_{IJ}$	ры	Q_{IJ}
3	10	8	1.4	1.0	14	0.40	1,520
4	15	8	1.4	1.0	21	0.60	2,280
				Total	35	1	3,800

Trip matrix:

J I	3	4	P_I
1	2,600	3,900	6,500
2	1,520	2,280	3,800
A_J^*	4,120	6,180	(10,300)

Compare A_J^* in both choices:

J Choice	3	4
Do nothing	5,763	4,537
Proposal	4,120	6,180

Zone 4 is predicted to attract more traffic. The Lower impedance the higher accessibility.

A base-year trip-generation study was calibrated and found the relationship between the daily person-trip productions per dwelling unit (*Y*) and residential density (*X* dwelling units per acre).

$$Y = (0.114 + 0.0043X)^{-1}$$

A residential zone *I* has an area of 500 acres and contains 7,500 dwelling units. Two zones (*J* and *L*) are competing for the trips produced by *I*. Given the following information, calculate the trip interchange volumes Q_{IJ} and Q_{IL} if $W_{IJ} = 12$, $W_{IL} = 8$, c = 1.5, $A_J = 0.5$ A_L , and all $K_{IJ} = 1.0$.

Density of zone I = 7,500/500 = 15 unit/acre

Trip rate Y

Trip rate,
$$Y = (0.114 + 0.0043 \times 15)^{-1} = 5.6 \text{ trip/unit}$$

Trip production P_I = # of units × trip rate = 7,500 × 5.6 = 42,000 person trips

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_JF_{IJ}K_{IJ}$	ры	Q_{IJ}
J	$0.5A_L$	12	0.012	1.0	$0.006A_L$	0.12	5,040
L	A_L	8	0.044	1.0	$0.044A_L$	0.88	36,960
				Total	$0.050A_L$	1	42,000

Zone	Production	Attractiveness
1	2,000	4
2	0	10
3	0	12

W_{ij}			
J I	1	2	3
1	5	10	15
2	10	4	10
3	15	10	15

Estimate all interchange volumes assuming that c = 1.9 and that all socioeconomic adjustment factors are equal to unity.

J	A_J	W_{IJ}	F_{IJ}	K_{IJ}	$A_{J}F_{IJ}K_{IJ}$	ри	Q_{IJ}
1	4	5	0.047	1.0	0.188	0.49	980
2	10	10	0.013	1.0	0.126	0.33	660
3	12	15	0.006	1.0	0.070	0.18	360
				Total	0.384	1	2,000

The observed and calculated interzonal flow interchanging between I and J were 2,500 and 2,100, respectively. The data corresponding to the interchange between zones I and L were 1,960 and 2,060. Given that the total production of zone I was 12,000 trips, calculate the socioeconomic adjustment factors for the two interchanges.

$$K_{IJ} = R_{IJ} \frac{1 - X_I}{1 - X_I R_{IJ}}$$
 $R_{IJ} = \frac{Observed \ Q_{IJ}}{Calculated \ Q_{IJ}}$
 $X_{IJ} = \frac{Observed \ Q_{IJ}}{P_I}$

For the link *IJ*:

$$R_{IJ} = \frac{Observed \ Q_{IJ}}{Calculated \ Q_{IJ}} = \frac{2,500}{2,100} = 1.19$$

$$X_{IJ} = \frac{Observed \ Q_{IJ}}{P_I} = \frac{2,500}{12,000} = 0.21$$

$$K_{IJ} = R_{IJ} \frac{1 - X_I}{1 - X_I R_{IJ}} = 1.19 \times \frac{1 - 0.21}{1 - 0.21 \times 1.19} = 1.25$$

For the link *IL*:

$$R_{IL} = \frac{Observed \ Q_{IL}}{Calculated \ Q_{IL}} = \frac{1,960}{2,060} = 0.95$$

$$X_{IJ} = \frac{Observed \ Q_{IL}}{P_I} = \frac{1,960}{12,000} = 0.16$$

$$K_{IL} = R_{IL} \frac{1 - X_I}{1 - X_I R_{IL}} = 0.95 \times \frac{1 - 0.16}{1 - 0.16 \times 0.95} = 0.94$$

Given the utility equation:

$$U_K = a_K - 0.003X_1 - 0.04X_2$$

where X_1 is the travel cost in cents and X_2 is the travel time in minutes.

(a) Calculate the market shares of the following travel modes if the interzonal flow interchanging is 5000 person trips:

Mode	a_K	X_I	X_2
Automobile	- 0.20	120	30
Express bus	- 0.40	60	45
Regular bus	- 0.60	30	55

(b) Estimate the effect that a 50% increase in the cost of all three modes Will have on modal split.

(a)

$$p(K) = \frac{e^{U_K}}{\sum e^{U_K}}$$

 $Market\ share = p(K)Q_{II}$

Mode	U_K	e^{Uk}	p(K)	Market share
Automobile Express bus	- 1.76 - 2.38	0.1720 0.0926	0.54 0.29	2,687 1,445
Regular bus	-2.89	0.0556	0.17	868
		0.3202	1.0	5,000

(b)

If there is a 50% increase in cost, the new values of X_1 for automobile, express bus, and regular bus will be 180, 90, and 45 cents, respectively.

Mode	U_K	e^{Uk}	p(K)	Market share
Automobile Express bus Regular bus	- 1.94 - 2.47 - 2.94	0.1437 0.0846 0.0531	0.51 0.30 0.19	2,553 1,502 945
Regular bus	- 2.J -1	0.2814	1.0	5,000

There is a non-significant effect of doubling the cost. A mild shift from automobile to public transit is predicted.

Given the utility equation:

$$U_K = a_K - 0.05T_a - 0.04T_w - 0.02T_r - 0.01C$$

where

 T_a = access time

 T_w = waiting time

 T_r = riding time

C = out-of-pocket cost

(a) Apply the logit model to calculate the Shares of the automobile mode ($a_K = -0.005$) and a mass transit mode ($a_K = -0.05$) if

Mode	T_a	T_w	T_r	С
Automobile	5	0	30	100
Transit	10	10	45	50

(b) Use the incremental logit model to estimate the patronage shift that would result from doubling the bus out-of-pocket cost.

(a)

Mode	U_K	e^{Uk}	p(K)
Automobile Transit	- 1.86 - 2.35	0.1565 0.0954	0.62 0.38
		0.2519	1.0

(b)

Doubling the bus out-of-pocket cost will change C to 100.

Mode	U_K	e^{Uk}	p(K)
Automobile Transit	- 1.86 - 2.85	0.1565 0.0578	0.73 0.27
		0.2143	1.0

There is a significant effect of doubling the transit cost. A significant percentage of transit riders is predicted to shift to automobiles.