
BCH 445 Biochemistry of Nutrition [Practical] Estimation of reducing sugars by Dinitrosalicylic acid method

Carbohydrates in milk

- The major constituents of milk are carbohydrates, fats and proteins.
- The carbohydrate fraction of milk comprises a complex mixture of mono-, di-, and oligosaccharides of which lactose, is the major constituent in most mammalian species.
- Other free carbohydrates found in milk but at <u>low concentrations</u>, including glucose, galactose, amino sugars, sugar phosphates, neutral and acid oligosaccharides, and nucleotide sugars.
- As lactose is the main carbohydrate in commercial milk, its determination is a basic indicator of <u>quality control</u> and detection of <u>abnormal milk</u>.

Human vs cow milk

Human milk contains more lactose than cow's milk.

> However, cow milk contains higher content of protein.

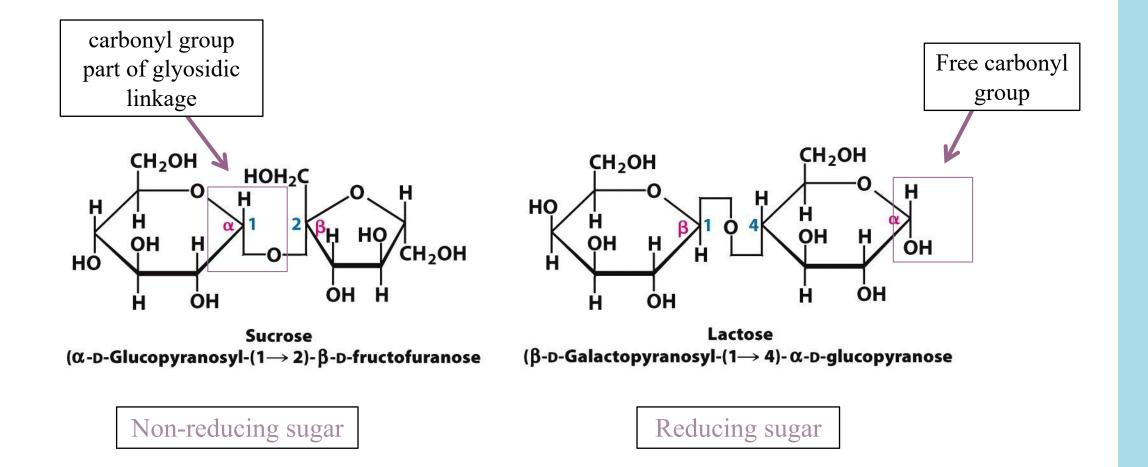
Component	Human	Bovine
Protein (g∕dL) ¹	0.9 to 1.2	3.3
Fat (g∕dL) ¹	3.2 to 3.6	3.7
Lactose (g/dL)	6.7 to 7.8	4.5
Oligosaccharides (g∕dL) ¹	0.7 to 1.2	0.1
No. of identified oligosaccharides ²	<200	approximately 40
% fucosylated ²	35% to 50%	approximately 1%
% sialylated ²	12% to 14%	Less than 25%

Sources:¹ (Ballard & Morrow, 2013), ² (Totten et al., 2012).

Figure 1. Differences in human and cow milk composition.

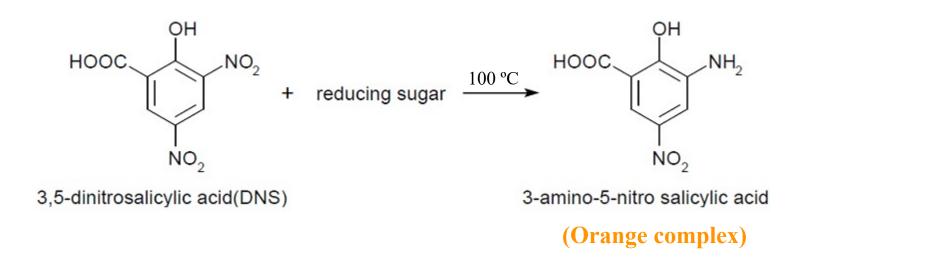
Lactose in milk

- Lactose is a disaccharide sugar derived from galactose and glucose.
- It is a reducing sugar (why?).
- Some of the methods for lactose detection in milk are based on the assumption that lactose is the <u>only reducing sugars in milk.</u>
- In this experiment, dinitrosalicylic acid (DNS) method will be used, which based on the detection of reducing sugar (which will give a general estimation for lactose not an accurate one, because in milk there are also <u>other reducing sugars</u>).

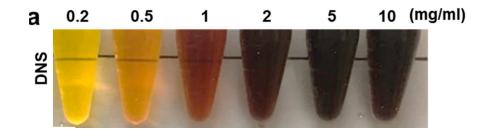

Practical Part

Objective:

• Estimation of reducing sugars by dinitrosalicylic acid method in milk sample.


DNS method

- The dinitrosalicylic acid (DNS) method for estimating the concentration of reducing sugars in a sample.
- Not specific.
- Reducing sugars contain free carbonyl group, which have the property to reduce many of the reagents.
- All monosaccharides and **some** disaccharides are reducing sugars (sucrose?).



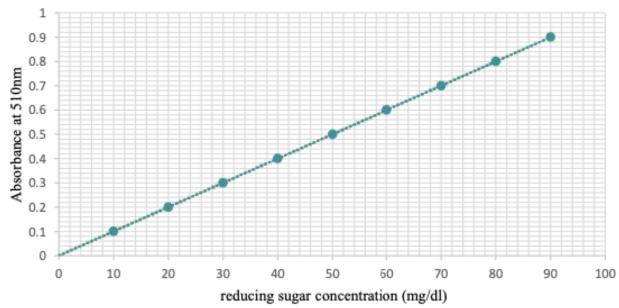
Principle

When alkaline solution of 3,5-dinitrosalicylic acid reacts with reducing sugars (e.g. Glucose, lactose, etc.) it is converted into 3-amino-5-nitrosalicylic acid with orange color (which absorbs at 540 nm).

Intensity of the color is an index of reducing sugar.

Method

Tubes	Glucose solution (100mg/dl) (ml)	Sample (ml)	Water (ml)	DNS reagent (ml)		Sodium potassium tartrate (ml)
В			I	3	Cover the	I
I	0.1		0.9	3		I
2	0.2		0.8	3		I
3	0.3		0.7	3		I
4	0.4		0.6	3		I
5	0.5		0.5	3	tubes (with	I
6	0.6		0.4	3	aluminum foil)	I
7	0.7		0.3	3	 And heat for 5 min. in a boiling 	I
8	0.8		0.2	3	water bath	I
SI (Milk)		I		3		I
S2 (Milk)		0.6	0.4	3		I
SI (Honey)		I		3		I
S2 (Honey)		0.6	0.4	3		I


Method cont.

- 1. Mix the contents.
- 2. Place test tubes in boiling water bath for 5 min.
- 3. Cool by immersing in cold water and read at 540 nm.
- 4. Plot the standard curve and calculate the amount in the sample from standard curve and calculate the contents.

Results

Tube	Absorbance at 540nm	CHO content (mg/dl)
В		
Ι		C1xV1=C2xV2 100X0.1=C2x1 C2= 10
2		
3		
4		
5		
6		
7		
8		
9		
10		
SI		
S2		

Calculations

Dilution factor (DF)= final volume / aliquot volume

The amount of carbohydrate in the sample=mg/dl x DF

Homework

- 1. DNS is one method used to determine reducing sugar content, name other methods. "*list 3*"
- 2. Explain how lactose can be an indicator of milk spoilage.