Exercise 1 You are given that losses follow a Pareto distribution with $\alpha = 3$ and $\theta = 1,000$. The company implements a franchise deductible so that the $E(Y^P)$ with the franchise deductible is 130% of E(X) without any deductible. Calculate the franchise deductible.

Exercise 2 Losses follow a uniform distribution over the range of 0 to 1000. Calculate the Loss Elimination Ratio if an ordinary deductible of 200 is applied.

Exercise 3 Under an unmodified geometric distribution, Var(N) = 20. Under a zero-modified geometric distribution, Var(N) = 20.25. The parameter β is the same for both distributions. Calculate p_0^M .

Exercise 4 An insurance policy pays claims up to a limit of 2000. A random sample of three claim payments is obtained as follows: 300, 1000, and 2000. The claims amounts are assumed to follow a Uniform distribution on $(0, \omega)$. Based on the data, we can surmise that the claim amounts could be grouped as follows:

Claim Amounts	Count
0 - 2000	2
2000 +	1

Calculate the maximum likelihood estimate for ω .

Exercise 5 You are given the following data which is assumed to be drawn from a uniform distribution over the range 0 to ω :

Claim amount	Count
0 - 200	6
200 - 500	8
500 - 1000	12
1000 - 5000	14
5000 and over	10

a) Determine the maximum likelihood estimate of ω .

b) If you knew that the 10 largest claims ranged from 5150 and 8000, what would be the maximum likelihood estimate of ω .

Exercise 6 One hundred laptop computers are observed for a period of 12 months. Thirty laptops malfunction during the observation period, with the following distribution:

Time Till Malfunction	Number of
in Months	Malfunctions
1	8
2	6
3	0
4	0
5	1
6	0
7	1
8	2
9	2
10	3
11	3
12	4

The remaining seventy laptops are still functioning at the end of 12 months. The lifetime of a laptop is believed to follow an exponential survival function with mean of θ .

Calculate the maximum likelihood estimate of θ .

Exercise 7 A Life Insurance Company is completing a mortality study on a 4 year term insurance policy. Use a Kaplan-Meier product-limit estimator to approximate $S_{25}(2.5)$.

The following Table 1 is available:

Та	bl	е	1
----	----	---	---

Life	Date of Entry	Date of Exit	Reason for Exit
1	0	0.2	Lapse
2	0	0.3	Lapse
3	0	0.5	Lapse
4	0	0.5	Death
5	0	0.7	Lapse
6	0	1.0	Death
7	0	2.0	Lapse
8	0	2.5	Death
9	0	3.0	Lapse
10	0	3.5	Death
11	0	4.0	Expiry of Policy
12	0	4.0	Expiry of Policy
13	0	4.0	Expiry of Policy
14	0	4.0	Expiry of Policy
15	0	4.0	Expiry of Policy
16	0	4.0	Expiry of Policy
17	0	4.0	Expiry of Policy
18	0	4.0	Expiry of Policy
19	0.5	4.0	Expiry of Policy
20	0.7	1.0	Death
21	1.0	3.0	Death
22	1.0	4.0	Expiry of Policy
23	2.0	2.5	Death
24	2.0	2.5	Lapse
25	3.0	3.5	Death

$$\int ds ss \quad fhw 2$$

$$X_{n} \text{ farctor} \left(\begin{array}{c} \alpha_{n,3} \\ \alpha_{n,0} \end{array} \right) \frac{1}{2} \left(\begin{array}{c} \frac{\nabla(x) - \nabla(x_{n,1})}{p(x_{n,n})} + \alpha \right) + \alpha \right) = f(\alpha) = \frac{1}{\alpha_{n-1}} - f(\alpha)$$

$$= \frac{\frac{1}{\alpha_{n-1}} \left(\begin{array}{c} \frac{1}{\alpha_{n-1}} \\ \alpha_{n-1} \end{array} \right) \left(\begin{array}{c} \frac{1}{\alpha$$

$$F_{x}H = \left[F(2er)\right]^{2} \times S(2ero)$$

$$= \left[\frac{1}{(2ero)}\right]^{2} \left(\frac{\omega-2ero}{\omega}\right) = \frac{\omega-2ero}{\omega^{3}}$$

$$= \left[\frac{1}{(2ero)}\right]^{2} \left(\frac{\omega-2ero}{\omega}\right) = \frac{\omega-2ero}{\omega^{3}}$$

$$= \left[\frac{1}{(2ero)}\right]^{2} \left(\frac{\omega-2ero}{\omega}\right) = 3\left[\omega-2ero\right]$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero$$

$$= 2\omega = 3\times 2ero(m) \cdot \omega = 3ero(m) \cdot$$

$$E \times 6 \qquad f(x) = -\frac{1}{6} e^{-x/\beta} \qquad S(x) = e^{-x/\beta} \\ h(\theta|x) = \left(\prod \left(\frac{1}{6} e^{-x(\beta)}\right)^n\right) \left(e^{-12(\beta)}\right)^{\frac{1}{7}} \\ = \left(\frac{1}{6} e^{-10}\right)^n \left(\frac{1}{6} e^{-2(\beta)}\right) \left(\frac{1}{6} e^{-3(\beta)}\right)^2 \\ \left(\frac{1}{6} e^{-10\beta}\right)^n \left(\frac{1}{6} e^{-\beta\beta}\right)^2 \left(\frac{1}{6} e^{-\beta\beta}\right)^{\frac{1}{7}} \\ \left(\frac{1}{6} e^{-10\beta}\right)^n \left(\frac{1}{6} e^{-11\beta}\right)^n \left(\frac{1}{6} e^{-12\beta}\right)^{\frac{1}{7}} \\ = \left(\frac{1}{6} e^{-2(\beta)}\right)^n \left(\frac{1}{6} e^{-12\beta}\right)^{\frac{1}{7}} \\ \frac{1}{6} e^{-12\beta} \left(\frac{1}{6} e^{-12\beta}\right)^{\frac{1}{7}} \\ = \left(\frac{1}{6} e^{-12\beta}\right)^n \left(\frac{1}{6} e^{-12\beta}\right)^{\frac{1}{7}} \\ \frac{1}{6} e^{-12\beta} \left(\frac{1}{6} e^{$$

Ex7

d	X	u 1
O		0.2
0	-	0.3
0	-	0.5
	0.5	
· · · ·	_	0.7
1	1	_
)	-	2
)	2.5	·
/	_	3
	3.5	_
	-	4
)	-	4
/		u l
	_	4
	-	u
)	-	4 4
	1	_
	3	_
	-	Н
	2.5	·
(_	2.5
D	3.5	_

 $S_{25}(2.5) = \frac{5}{10} \left(1 - \frac{5}{20}\right)$ $= (1 - \frac{1}{16}) (1 - \frac{2}{15}) (1 - \frac{2}{15}) (1 - \frac{2}{15})$ = 0.7109