College of Sciences
Department of
Statistics and Operations Research

كلية العلوم
قسم الإحصاء

Monday, March 9, 2020	ACTU 466	Academic year 1441-42H
10:00-11:30 AM	LOSS	Second Semester

Instructions

- Switch off your mobile and place it under your seat.
- Time allowed is 90 minutes.
- You are not asked to provide detailed explanations for all answers.
- For exercise 5, four responses are given, only one is correct.

Exercise 1 Consider the random variables $X_{1} \sim \operatorname{Pareto}(\alpha=9, \theta=7)$ with a density $f_{X_{1}}$ and $X_{2} \sim \operatorname{Exponential}($ mean $=3)$ with a density $f_{X_{2}}$ and $X_{3} \sim$ Exponential $(m e a n=5)$ with a density $f_{X_{3}}$. Construct a spliced distribution X from $f_{X_{1}}$ on $[0,2), f_{X_{2}}(x)$ on $[2,7)$, and $f_{X_{3}}(x)$ on $[7, \infty)$, such that under the new distribution the probabilities of these intervals are $1 / 4$ and $2 / 3$ and $1 / 12$ respectively.
Hint: write $f(x)=\left\{\begin{array}{c}a \times f_{X_{1}}(x) \text { for } x \in[0,2) \\ b \times f_{X_{2}}(x) \text { for } x \in[2,7) \\ c \times f_{X_{3}}(x) \text { for } x \in[7, \infty)\end{array}\right.$
Exercise 2 The YANG insurance company provided earthquake insurance houses in San Francisco. For 2015, the claims X were distributed as a Pareto distribution with $\alpha=3$ and $\theta=100,000$. In 2015, the earthquake insurance did not have any deductibles, but had an upper limit u so that the expected cost $E(X \wedge u)$ for the coverage with policy limit in 2015 was 80% of the expected value EX of the loss. Determine the upper limit u.

Exercise 3 The number of losses N per policy for health insurance is distributed as a Negative binomial with a mean of 6 . The amounf of each loss Y is follows a Weibull distribution with $\tau=2$ and $\theta=500$. An insurance policy covering health insurance has an ordinary deductible d such that the expected number of claims per policy (or the expected number of payments) is 5. Calculate the amount of the deductible d.

Exercise 4 The random variable X represents loss under comprehensible coverage for automobile insurance. Losses are distributed as a two point mixture distribution as follows:

Distribution	Weight
Pareto distribution with $\alpha=5$ and $\theta=1,000$	0.6
Pareto distribution with $\alpha=3$ and $\theta=6,000$	0.4

Calculate the $\operatorname{var}(X)$.
Exercise 5 You are given that X is the random variable representing the amount of a claim from an automobile accident. X is distributed as a two parameter Pareto Distribution with mean of 2,000 and a variance of $6,000,000$. The Henry Auto Insurance Company issues automobile policies with a deductible d of 500 . This policy will pay for the amount of any claim in excess of 500. Calculate the expected value of payment per claim incurred $E\left(Y^{L}\right)$. This is the same as $E\left[(X-500)^{+}\right]$.
Hint: calculate first the values of the parameters of the Pareto distribution.
a) $76,435.98$ b) $5,476.76$ c) 54.54 d) $1,567.05$

A.2.3 Two-parameter distributions

A.2.3.1 Pareto (Pareto Type II, Lomax) - α, θ

$$
\begin{aligned}
f(x) & =\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}} \quad F(x)=1-\left(\frac{\theta}{x+\theta}\right)^{\alpha} \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)}, \quad-1<k<\alpha \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} k!}{(\alpha-1) \cdots(\alpha-k)}, \quad \text { if } k \text { is an integer } \\
\operatorname{VaR}_{p}(X) & =\theta\left[(1-p)^{-1 / \alpha}-1\right] \\
\mathrm{TVaR}_{p}(X) & =\operatorname{VaR}_{p}(X)+\frac{\theta(1-p)^{-1 / \alpha}}{\alpha-1}, \quad \alpha>1 \\
\mathrm{E}[X \wedge x] & =\frac{\theta}{\alpha-1}\left[1-\left(\frac{\theta}{x+\theta}\right)^{\alpha-1}\right], \quad \alpha \neq 1 \\
\mathrm{E}[X \wedge x] & =-\theta \ln \left(\frac{\theta}{x+\theta}\right), \quad \alpha=1 \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\frac{\theta^{k} \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)} \beta[k+1, \alpha-k ; x /(x+\theta)]+x^{k}\left(\frac{\theta}{x+\theta}\right)^{\alpha}, \quad \text { all } k \\
\text { mode } & =0
\end{aligned}
$$

A.2.3.2 Inverse Pareto- τ, θ

$$
\begin{aligned}
f(x) & =\frac{\tau \theta x^{\tau-1}}{(x+\theta)^{\tau+1}} \quad F(x)=\left(\frac{x}{x+\theta}\right)^{\tau} \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} \Gamma(\tau+k) \Gamma(1-k)}{\Gamma(\tau)}, \quad-\tau<k<1 \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k}(-k)!}{(\tau-1) \cdots(\tau+k)}, \quad \text { if } k \text { is a negative integer } \\
\operatorname{VaR}_{p}(X) & =\theta\left[p^{-1 / \tau}-1\right]^{-1} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \tau \int_{0}^{x /(x+\theta)} y^{\tau+k-1}(1-y)^{-k} d y+x^{k}\left[1-\left(\frac{x}{x+\theta}\right)^{\tau}\right], \quad k>-\tau \\
\text { mode } & =\theta \frac{\tau-1}{2}, \tau>1, \text { else } 0
\end{aligned}
$$

A.2.3.3 Loglogistic (Fisk) - γ, θ

$$
\begin{aligned}
f(x) & =\frac{\gamma(x / \theta)^{\gamma}}{x\left[1+(x / \theta)^{\gamma}\right]^{2}} \quad F(x)=u, \quad u=\frac{(x / \theta)^{\gamma}}{1+(x / \theta)^{\gamma}} \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} \Gamma(1+k / \gamma) \Gamma(1-k / \gamma), \quad-\gamma<k<\gamma \\
\operatorname{VaR}_{p}(X) & =\theta\left(p^{-1}-1\right)^{-1 / \gamma} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \Gamma(1+k / \gamma) \Gamma(1-k / \gamma) \beta(1+k / \gamma, 1-k / \gamma ; u)+x^{k}(1-u), \quad k>-\gamma \\
\text { mode } & =\theta\left(\frac{\gamma-1}{\gamma+1}\right)^{1 / \gamma}, \quad \gamma>1, \text { else } 0
\end{aligned}
$$

A.3.2.2 Inverse gamma (Vinci) - α, θ

$$
\begin{aligned}
f(x) & =\frac{(\theta / x)^{\alpha} e^{-\theta / x}}{x \Gamma(\alpha)} \quad F(x)=1-\Gamma(\alpha ; \theta / x) \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} \Gamma(\alpha-k)}{\Gamma(\alpha)}, \quad k<\alpha \quad \mathrm{E}\left[X^{k}\right]=\frac{\theta^{k}}{(\alpha-1) \cdots(\alpha-k)}, \quad \text { if } k \text { is an integer } \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\frac{\theta^{k} \Gamma(\alpha-k)}{\Gamma(\alpha)}[1-\Gamma(\alpha-k ; \theta / x)]+x^{k} \Gamma(\alpha ; \theta / x) \\
& =\frac{\theta^{k} \Gamma(\alpha-k)}{\Gamma(\alpha)} G(\alpha-k ; \theta / x)+x^{k} \Gamma(\alpha ; \theta / x), \text { all } k \\
\text { mode } & =\theta /(\alpha+1)
\end{aligned}
$$

A.3.2.3 Weibull- θ, τ

$$
\begin{aligned}
f(x) & =\frac{\tau(x / \theta)^{\tau} e^{-(x / \theta)^{\tau}}}{x} \quad F(x)=1-e^{-(x / \theta)^{\tau}} \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} \Gamma(1+k / \tau), \quad k>-\tau \\
\operatorname{VaR}_{p}(X) & =\theta[-\ln (1-p)]^{1 / \tau} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \Gamma(1+k / \tau) \Gamma\left[1+k / \tau ;(x / \theta)^{\tau}\right]+x^{k} e^{-(x / \theta)^{\tau}}, \quad k>-\tau \\
\text { mode } & =\theta\left(\frac{\tau-1}{\tau}\right)^{1 / \tau}, \quad \tau>1, \text { else } 0
\end{aligned}
$$

A.3.2.4 Inverse Weibull (log Gompertz)— θ, τ

$$
\begin{aligned}
f(x) & =\frac{\tau(\theta / x)^{\tau} e^{-(\theta / x)^{\tau}}}{x} \quad F(x)=e^{-(\theta / x)^{\tau}} \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} \Gamma(1-k / \tau), \quad k<\tau \\
\operatorname{VaR}_{p}(X) & =\theta(-\ln p)^{-1 / \tau} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \Gamma(1-k / \tau)\left\{1-\Gamma\left[1-k / \tau ;(\theta / x)^{\tau}\right]\right\}+x^{k}\left[1-e^{-(\theta / x)^{\tau}}\right], \quad \text { all } k \\
& =\theta^{k} \Gamma(1-k / \tau) G\left[1-k / \tau ;(\theta / x)^{\tau}\right]+x^{k}\left[1-e^{-(\theta / x)^{\tau}}\right] \\
\text { mode } & =\theta\left(\frac{\tau}{\tau+1}\right)^{1 / \tau}
\end{aligned}
$$

A.3.3 One-parameter distributions

A.3.3.1 Exponential- θ

$$
\begin{aligned}
f(x) & =\frac{e^{-x / \theta}}{\theta} \quad F(x)=1-e^{-x / \theta} \\
M(t) & =(1-\theta t)^{-1} \quad \mathrm{E}\left[X^{k}\right]=\theta^{k} \Gamma(k+1), \quad k>-1 \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} k!, \quad \text { if } k \text { is an integer } \\
\operatorname{VaR}_{p}(X) & =-\theta \ln (1-p) \\
\mathrm{TVR}_{p}(X) & =-\theta \ln (1-p)+\theta \\
\mathrm{E}[X \wedge x] & =\theta\left(1-e^{-x / \theta}\right) \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \Gamma(k+1) \Gamma(k+1 ; x / \theta)+x^{k} e^{-x / \theta}, \quad k>-1 \\
& =\theta^{k} k!\Gamma(k+1 ; x / \theta)+x^{k} e^{-x / \theta}, \quad k \text { an integer } \\
\text { mode } & =0
\end{aligned}
$$

A.3.3.2 Inverse exponential- θ

$$
\begin{aligned}
f(x) & =\frac{\theta e^{-\theta / x}}{x^{2}} \quad F(x)=e^{-\theta / x} \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} \Gamma(1-k), \quad k<1 \\
\mathrm{VaR}_{p}(X) & =\theta(-\ln p)^{-1} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} G(1-k ; \theta / x)+x^{k}\left(1-e^{-\theta / x}\right), \quad \text { all } k \\
\text { mode } & =\theta / 2
\end{aligned}
$$

A. 5 Other distributions

A.5.1.1 Lognormal- μ, σ (μ can be negative)

$$
\begin{aligned}
f(x) & =\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left(-z^{2} / 2\right)=\phi(z) /(\sigma x), \quad z=\frac{\ln x-\mu}{\sigma} \quad F(x)=\Phi(z) \\
\mathrm{E}\left[X^{k}\right] & =\exp \left(k \mu+k^{2} \sigma^{2} / 2\right) \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\exp \left(k \mu+k^{2} \sigma^{2} / 2\right) \Phi\left(\frac{\ln x-\mu-k \sigma^{2}}{\sigma}\right)+x^{k}[1-F(x)] \\
\text { mode } & =\exp \left(\mu-\sigma^{2}\right)
\end{aligned}
$$

B.2.1.2 Geometric- β

$$
\begin{aligned}
p_{0} & =\frac{1}{1+\beta}, \quad a=\frac{\beta}{1+\beta}, \quad b=0 & p_{k}=\frac{\beta^{k}}{(1+\beta)^{k+1}} \\
\mathrm{E}[N] & =\beta, \quad \operatorname{Var}[N]=\beta(1+\beta) & P(z)=[1-\beta(z-1)]^{-1} .
\end{aligned}
$$

This is a special case of the negative binomial with $r=1$.
B.2.1.3 Binomial- $q, m,(0<q<1, m$ an integer $)$

$$
\begin{aligned}
p_{0} & =(1-q)^{m}, \quad a=-\frac{q}{1-q}, \quad b=\frac{(m+1) q}{1-q} \\
p_{k} & =\binom{m}{k} q^{k}(1-q)^{m-k}, \quad k=0,1, \ldots, m \\
\mathrm{E}[N] & =m q, \quad \operatorname{Var}[N]=m q(1-q) \quad P(z)=[1+q(z-1)]^{m} .
\end{aligned}
$$

B.2.1.4 Negative binomial- β, r

$$
\begin{aligned}
p_{0} & =(1+\beta)^{-r}, \quad a=\frac{\beta}{1+\beta}, \quad b=\frac{(r-1) \beta}{1+\beta} \\
p_{k} & =\frac{r(r+1) \cdots(r+k-1) \beta^{k}}{k!(1+\beta)^{r+k}} \\
\mathrm{E}[N] & =r \beta, \quad \operatorname{Var}[N]=r \beta(1+\beta) \quad P(z)=[1-\beta(z-1)]^{-r} .
\end{aligned}
$$

B. 3 The ($a, b, 1$) class

To distinguish this class from the $(a, b, 0)$ class, the probabilities are denoted $\operatorname{Pr}(N=k)=p_{k}^{M}$ or $\operatorname{Pr}(N=$ $k)=p_{k}^{T}$ depending on which subclass is being represented. For this class, p_{0}^{M} is arbitrary (that is, it is a parameter) and then p_{1}^{M} or p_{1}^{T} is a specified function of the parameters a and b. Subsequent probabilities are obtained recursively as in the $(a, b, 0)$ class: $p_{k}^{M}=(a+b / k) p_{k-1}^{M}, k=2,3, \ldots$, with the same recursion for p_{k}^{T} There are two sub-classes of this class. When discussing their members, we often refer to the "corresponding" member of the $(a, b, 0)$ class. This refers to the member of that class with the same values for a and b. The notation p_{k} will continue to be used for probabilities for the corresponding ($a, b, 0$) distribution.

B.3.1 The zero-truncated subclass

The members of this class have $p_{0}^{T}=0$ and therefore it need not be estimated. These distributions should only be used when a value of zero is impossible. The first factorial moment is $\mu_{(1)}=(a+b) /\left[(1-a)\left(1-p_{0}\right)\right]$, where p_{0} is the value for the corresponding member of the $(a, b, 0)$ class. For the logarithmic distribution (which has no corresponding member), $\mu_{(1)}=\beta / \ln (1+\beta)$. Higher factorial moments are obtained recursively with the same formula as with the $(a, b, 0)$ class. The variance is $(a+b)\left[1-(a+b+1) p_{0}\right] /\left[(1-a)\left(1-p_{0}\right)\right]^{2}$.For those members of the subclass which have corresponding $(a, b, 0)$ distributions, $p_{k}^{T}=p_{k} /\left(1-p_{0}\right)$.
loss HWY 1 Solution
Ex

$$
f(x)= \begin{cases}\frac{1}{4} \times A f_{1}(x) & 0<x<2 \\ 1 / 3 \times B f_{2}(x) & 2<x<7 \\ 1 / 12 \times C f_{3}(x) & x>7\end{cases}
$$

where $f(x)$ density of Pareto $(\alpha=9, \theta=7)$

$$
\begin{aligned}
& f_{2}(x) \quad " \operatorname{Exp}(\text { mean }=3) \\
& f_{3}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2} A f_{1}(x) d x=1 \Leftrightarrow A F_{1}(2)=1 \text { (you should not } \\
& \left.\Leftrightarrow A=\frac{1}{1-(719)^{9}}=1.11627 \quad \begin{array}{l}
\text { integral. We have } \\
\text { new did } t
\end{array}\right) \\
& \int_{2}^{7} B f_{2}(x)=1 \Leftrightarrow B\left[S_{2}(2)-S(7)\right]=1 \\
& \Leftrightarrow B=\frac{1}{e^{-2 / 3}-e^{-7 / 3}}=2.401277 \\
& \int_{7}^{\infty} C f_{3}(x) d x=1 \Leftrightarrow C \times S(7)=1 \\
& \Leftrightarrow C \times e^{-7 / 5}=1 \Leftrightarrow C=e^{7 / 5} \\
& =4.0552 \\
& f(x)=\left\{\begin{array}{l}
0.279 \times f_{1}(n) \\
1.600 \times f_{2}(n) \\
0.3379 \times f_{3}(x)
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& E \times 2\left(x_{\wedge} u\right)=0.8 \times E(x) \\
& E(x)=\frac{\theta}{\alpha-1}=50,000 \\
& E(x \wedge u)=\frac{\theta}{\alpha-1}\left[1-\left(\frac{\theta}{u+\theta}\right)^{\alpha-1}\right]=0.8 \frac{\theta}{\alpha-1} \\
& \Leftrightarrow 50,000-50,000\left(\frac{\theta}{u+0}\right)^{2}=0.8 \times 50,000 \\
& \Leftrightarrow 0.2 \times 50,000=50,000\left(\frac{\theta}{u+0}\right)^{2} \\
& \Leftrightarrow\left(\frac{\theta}{u+\theta}\right)=\sqrt{0.2} \Rightarrow u=\frac{(1-\sqrt{0.2}) 100,000}{\sqrt{0.2}}
\end{aligned}
$$

(all calculations should be dowel)

$$
=123 \cdot 607
$$

Ex 3
Soluhin2
N^{P}, is the number of losses for which loss $y>d$. (=the number of success)
Then $N^{T} I_{N} \sim$ Binomial $(N, P=P(Y>d))$

$$
\begin{aligned}
& \left.N^{p}\right|_{N} \sim \text { Binomial }\left(N, P=N P \Rightarrow E\left(N^{p}\right)=E\left(E\left(N^{p} \mid N\right)\right)=E(N p)\right. \\
\Rightarrow & E\left(N^{p} \mid N\right)=N(N) \Rightarrow P=516 \\
& \text { indep }
\end{aligned}
$$

Solution 2 $\begin{aligned} d & =213.4956 \\ N^{p} & =\sum_{i=1}^{N} M_{y_{i}}>d\end{aligned}$
$\Rightarrow N^{P}$ is a compound distribution

$$
E\left(N^{p}\right)=E(N) \times E \underbrace{\left(M_{Y}>d\right)}_{=P(Y>d)}
$$

Ex 4

$$
\begin{aligned}
E(x) & =0.6 E\left(x_{1}\right)+0.4 E\left(x_{2}\right) \\
& =0.6 \times \frac{1000}{4}+0.4 \times 3000=1350 \\
E\left(x^{2}\right) & =0.6 E\left(x_{1}^{2}\right)+0.4 E\left(x_{2}^{2}\right) \\
& =0.6 \times 2 \times \frac{1000}{12}+0.4 \times 2 \times \frac{6000}{2} \\
& =14,500,000 \\
V(x) & =E\left(x^{2}\right)-[E(x)]^{2}=12,677,500 \\
& \theta-2000 \quad \theta-1) 2000
\end{aligned}
$$

ExS

$$
\begin{aligned}
& E(x)=\frac{\theta}{\alpha-1}=2000 \Rightarrow \theta=(\alpha-1) 2000 \\
& E\left(x^{2}\right)=[E(x)]^{2}+\sqrt{ }(x)=10^{7} \\
& \Rightarrow E\left(x^{2}\right)=\frac{2 \theta^{2}}{(\alpha-1)(\alpha-2)}=10^{7} \\
& \Rightarrow \frac{2 \times 4 \times 10^{6} \times(\alpha-1)^{2}}{(\alpha-1)(\alpha-2)}=10^{7} \\
& \Leftrightarrow 8 \times 10^{6} \times \frac{\alpha-1}{\alpha-2}=10^{7} \\
& \Rightarrow \frac{\alpha-1}{\alpha-2}=\frac{10}{8}=5 / 4 \\
& \begin{aligned}
u(\alpha-1)=5(\alpha-2) \Rightarrow \alpha=6 ; \theta & =2000(\alpha-1) \\
& =10,000
\end{aligned} \\
& \text { (all calculations shond be gaven) }
\end{aligned}
$$

$$
E(x)=E\left(x_{\wedge} d\right)+E\left(y^{L}\right)
$$

200

$$
\begin{aligned}
= & E\left(\frac{\theta}{\alpha-1}\right)^{L}\left[1-\left(\frac{\theta}{\alpha+\theta}\right)^{\alpha-1}\right]=432.95 \\
\Rightarrow & E\left(y^{L}\right)=2000-432.91 \\
& =1567.05
\end{aligned}
$$

