King Saud University	College of Sciences			Department of Statistics
Final Examination	Math 466	Semester II	$1441-1442$	Time: 4 H

الصنوابط التتطيمية لـلاختبارات المنزلية Take Home Exam الخاصة بِالطلاب.
1- على الطلاب ضرورة الاطلاع على كل مـا يخص الاختبارات من تعليهات سواء عن طريق البريا الإلكتروني وصفحة التمليهات وِ الاختبار.
 هيئة التدريس.

ضونئــا).

 وإلا ستّتبر إقْتباس ئئثر على درجة الطالب.

Explain your reasoning for why you have answered a certain value.

Exercise 1 You may use calculator (no need to calculate primitives). Assume the following data set:

$$
\begin{array}{lllll}
8 & 12 & 15 & 25 & 40
\end{array}
$$

If the data is smoothed using a triangular kernel with a bandwidth of 6 , calculate the variance of the smoothed distribution.
(A) 37.6
(B) 237.6
(C) 137.6
(D) 337.6
(E) 437.6

Exercise 2 Losses are distributed as a Pareto distribution with parameters $\alpha=2$ and θ. If losses are subject to an ordinary deductible of 20,000 , the expected cost per payment is 30,000 . If losses are subject to a franchise deductible of 20,000, calculate the the expected cost per-loss.

Exercise 3 You are given the following ages at time of death of 10 individuals

$$
\begin{array}{llllllllll}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100
\end{array}
$$

Using a triangular kernel with bandwidth 20, find the kernel estimate of $F(51)$.
A) 0.40
B) 0.42
C) 0.44
D) 0.46
E) 0.48

Exercise 4 You are given:
(i) Losses are uniformly distributed on $(0, \theta)$ with $\theta>15$
(ii) The policy limit u is 15 .
(iii) A sample of payments is:

$$
2,3,4,5,8,8,9,10,11,11,12,12,15,15,15
$$

Determine the method-of-moments estimate of θ.
A) 16.85
B) 15.85
C) 17.85
D) 19.85
E) 21.85

Exercise 5 (Bonus question (ii)) There are two independent insurance policies. The claim frequency of each policy follows a Binomial($2,0.1$) distribution. When there is a claim, the claim amount follows the zero-truncated Binomial $(5,0.4)$ distribution. What is the probability that the aggregate claim $S_{1}+S_{2}$ of these two policies is
(i) What is the probability that the aggregate claim $S_{1}+S_{2}$ of these two policies is zero?
$\begin{array}{ll}\text { (A) } 0.6561 & \text { (B) } 0.0561\end{array}$
(ii) What is the probability that the aggregate claim $S_{1}+S_{2}$ of these two policies is one?

Loss - Final
Solution

$$
\begin{aligned}
& \text { Ex } 1 \text { (} 5 \text { marks) } \\
& \begin{array}{c|c|c}
y-b & y & y+b \\
\hline 2 & 8 & 14
\end{array} \quad f(x)=\frac{1}{5} \sum_{i=1}^{5} k_{y_{i}}(x) \\
& \begin{array}{c|c|c}
6 & 12 & 18 \\
9 & 15 & 21 \\
19 & 25 & 31 \\
34 & 40 & 46
\end{array} \\
& \text { where } \\
& k_{y_{i}}(x)=\left\{\begin{array}{l}
\frac{1}{36}\left(x-\left(y_{i}-b\right)\right) \text { for } x \text { in }\left(y_{i}-b, y\right) \\
\frac{1}{36}\left(y_{i}+b-x\right) \text { for } x \operatorname{in}\left(y_{1}, y_{i}+b\right)
\end{array}\right. \\
& E(x)=\frac{1}{5 \times 36}\left[\int_{2}^{8} x(x-2) d x+\int_{8}^{14} x(14-x) d x\right. \\
& +\int_{6}^{12} x(x-6) d x+\int_{12}^{18} x(18-x) d x \\
& +\int_{9}^{15} x(x-9) d x+\int_{15}^{21} x(21-x) d x \\
& +\int_{19}^{25} x(x-19) d x+\int_{25}^{31} x(31-x) d x \\
& +\int_{34}^{40} x(x-34) d x+\int_{40}^{46^{25}} x(46-x) d x \\
& =\frac{3600}{5 \times 36}=20 . \\
& \begin{aligned}
E\left(x^{2}\right) & =\frac{1}{5 \times 36}\left[\int_{2}^{8} x^{2}(x-2) d x+\int_{8}^{14} x^{2}(14-x) d x+\cdots\right] \\
& =\frac{96768}{5 x 36}=537.6
\end{aligned} \\
& =\frac{96768}{5 \times 36}=537.6 \\
& V(x)=537.6-400=137.6 \text {. }
\end{aligned}
$$

Or
X is a 5 -point mixture distubution let I the discrete uniform with support $\{8,12,15,25,40\}$ $\left.x\right|_{y=y}$ is the riv with density $k_{y_{i}}(x)$.
let $\quad z_{i}=\left.x\right|_{y=}=y_{i}$
we have $x=\sum_{i=1}^{5} 1_{Y=y_{i}} \times Z_{i}$
We show that

$$
\begin{align*}
& \text { show that } \tag{1}\\
& \begin{aligned}
E\left(z_{i}\right) & =\frac{1}{b^{2}}\left[\int_{y_{i}-b}^{y_{i}} x\left(x-y_{i}+b\right) d x+\int_{y_{i}}^{y_{i}+b} x\left(y_{i}+b-x\right) d x\right. \\
& =y_{i} \\
E\left(z_{i}^{2}\right) & =\frac{1}{b^{2}}\left[\int_{y_{i}-b}^{y_{i}} x^{2}\left(x-y_{i}+b\right) d x+\int_{y_{i}}^{y_{i}+b} x^{2}\left(y_{i}+b-x\right) d x\right] \\
& =\frac{b^{2}}{6}+y_{i}^{2}
\end{aligned}
\end{align*}
$$

$$
\begin{aligned}
& \text { (i) } \\
& \Rightarrow E(x)=\sum_{i=1}^{5} P \underbrace{\left(y=y_{i}\right.}_{1 / 5}) \cdot E\left(Z_{i}\right)=\frac{\sum y_{i}}{5}=20 \\
& E\left(x^{2}\right)=\sum_{i=1}^{5} P\left(y=y_{i}^{\prime}\right) E\left(z_{i}^{2}\right)=\frac{b^{2}}{6}+\frac{\sum y_{i}^{2}}{5} \\
& =\frac{36}{6}+531.6=537.6 \\
& \Rightarrow V x=[\underbrace{\sum \frac{y^{2}}{5}-y^{2}}_{V_{e}(x)}]+\frac{b^{2}}{6}=137.6
\end{aligned}
$$

Ex 2 (4 marhs)
$x \sim \operatorname{Parcto}(\alpha=2, \theta) ; \alpha=20,000 ; E\left(Y_{1}^{p}\right)=30,00$ frencluse $t=20,000 \quad E\left(Y_{2}^{L}\right)$?

$$
\begin{aligned}
E\left(y_{A}^{L}\right) & =E(x)-E\left(x_{1} d\right) \\
& =\frac{\theta}{\alpha-1}-\frac{\theta}{\alpha-1}\left[1-\left(\frac{\theta}{d+\theta}\right)^{\alpha-1}\right] \\
& =\frac{\theta}{\alpha-1}\left(\frac{\theta}{\alpha+\theta}\right)^{\alpha-1} \\
E\left(y_{A}^{\alpha}\right) & =\frac{E\left(y_{A}^{L}\right)}{P(x>\alpha)}=\frac{\frac{\theta}{d-1}\left(\frac{\theta}{d+\theta}\right)^{\alpha-1}}{\left(\frac{\theta}{d+\theta}\right)^{\alpha}}=\frac{\alpha+\theta}{\alpha-1} \\
& =\frac{20,000+\theta}{2-1}=30,000 \Rightarrow \theta=10,000
\end{aligned}
$$

Pranchase

$$
\begin{aligned}
& E\left(y_{2}^{L}\right)=\underbrace{E(x)-E\left(x_{1}\right.}_{E\left(y_{1}^{L}\right)} d)+d P(x>d) \\
& =30,000 \times P(x>d)+d P(x>d) \\
& =(30,000+20,000)\left(\frac{\theta}{d+\theta}\right)^{\alpha} \\
& =50,000\left(\frac{10,000}{30,000}\right)^{2}=5,555.556
\end{aligned}
$$

Ex 3 (5 marks)

$y-b$	y	$b+b$	$k y(61)$
-10	10	30	1
0	20	40	1
10	30	50	1
20	40	60	
30	50	70	
40	60	80	$F_{y}(51)=\left\{\begin{array}{l}\frac{1}{2 b^{2}}\left(51-(y-b)^{2}\right) \\ 50 \\ 70\end{array} 90\right.$
60	80	100	0
70	90	110	0

$$
\begin{aligned}
& \hat{F}(51)=\frac{1}{10}\left[1+1+1+\left(1-\frac{(60-51)^{2}}{2 b^{2}}\right)\right. \\
&+\left(1-\left(\frac{70-51)^{2}}{2 b^{2}}\right)^{2}\right. \\
&+\left(\frac{51-40)^{2}}{2 b^{2}}+\frac{(51-50)^{2}}{2 b^{2}}\right]=\frac{4.6}{T_{0}} \\
&= 0.46 .
\end{aligned}
$$

Ex 4 (5 marks)

$$
\begin{array}{r}
u=15 \quad E(x, u)=\int_{0}^{u} S(x) d x=\int_{0}^{u} \frac{\theta-x}{\theta} d x \\
\\
=\frac{1}{\theta}\left[\theta x-\frac{x^{2}}{2}\right]_{0}^{u}=\frac{1}{\theta}\left[\theta u-u^{2} / 2\right]
\end{array}
$$

A method of moment estimate of θ $\dot{\hat{\theta}}$ solution of

$$
\begin{aligned}
& \frac{1}{\theta}\left(\theta u-u^{2} / 2\right)=\bar{x}(=9.33) \\
& \Leftrightarrow \theta-u^{2} / 2=\theta \bar{x} \\
& \Rightarrow \theta(u-\bar{x})=u^{2} / 2 \\
& \Rightarrow \hat{\theta}=\frac{u^{2}}{2(u-\bar{x})}=\frac{15^{2}}{2(15-9.333)^{2}}=19.85 \\
& (1+2 \text { marbs) }
\end{aligned}
$$

Ex5 (1+2 marbs)

$$
\begin{aligned}
& N \sim \operatorname{Bin}(2,0.1) \\
& \left\{\begin{array}{l}
S=\sum_{1}^{N} y_{i} \\
S=0 \text { if } \quad N=0 .
\end{array}\right.
\end{aligned}
$$

(a)

$$
\begin{aligned}
& P\left(S_{1}+S_{2}=0\right)=P\left(S_{1}=0\right) \times P\left(S_{2}=0\right) \\
&=P\left(S_{1}=0\right)^{2} \\
& P\left(S_{1}=0\right)=P\left(N_{1}=0\right)=0.9^{2}=0.81 \\
& \Rightarrow\left.P\left(S_{1}+S_{2}\right)=0\right)=0.81^{2}=0.6561
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P\left(S_{1}+S_{2}=1\right)=P\left(S_{1}=1, S_{2}=0\right) \\
& +P\left(S_{1}=0, S_{2}=1\right) \\
& =2 \times R\left(S_{1}=1\right) \underbrace{P\left(S_{2}=0\right)}_{0.81} \\
& P\left(S_{1}=1\right)=I \underbrace{\left(S_{1}=1 \mid N=0\right.}_{=0}) P(N=0) \\
& +I\left(S_{1}=1 \mid N=1\right) \underbrace{P(N=1)}_{=2 \times 0.1 \times 0.9}=0.18 \\
& +\underbrace{P\left(S_{1}=1 \mid N=2\right)}_{=0} \quad R(N=2) \\
& =P(Y=1) \quad \underline{P}(N=1)=P_{1}^{\top}(0.18) \\
& \text { with } P_{1}^{T}=\frac{m(1-q)^{m-1} 9}{1-(1-q)^{m}}=0.281(m=5, q=0.4) \\
& \Rightarrow P\left(S_{1}+S_{2}=1\right)=2 \times 0.281 \times 0.18 \times 0.81 \\
& =0.0819 \text {. }
\end{aligned}
$$

