Exercise 1 In a portfolio of insurance policies, the number of claims for each policyholder in each year, denoted by N, may be 0,1 , or 2 , with the following $p f: f_{N}(0)=0.1, f_{N}(1)=0.9-\theta$, and $f_{N}(2)=\theta$. The prior pdf of Θ is

$$
f_{\Theta}(\theta)=\frac{\theta^{2}}{0.039} \quad 0.2<\theta<0.5
$$

A randomly selected policyholder has two claims in Year 1 and two claims in Year 2. Determine the Bayes estimate of the expected number of claims in Year 3 of this policyholder.
(1) 1.722 (2) 0.722 (3) 0.322 (4) 1.319

Exercise 2 Suppose that X and Y have joint distribution

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
8 x y & 0<x<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $E(X \mid Y)$ and $E(Y \mid X)$.
Exercise 3 The number of stops X in a day for a delivery truck driver is Poisson with mean λ. Conditional on their being $X=x$ stops, the expected distance driven by the driver Y is Normal with a mean of αx miles, and a standard deviation of βx miles. Give the mean and variance of the numbers of miles she drives per day.

Credibility
$H W 1$
Ex1 HW1.

$$
\begin{gathered}
N_{1 \theta} \leqslant \begin{array}{cc}
0 & 0.1 \\
1 & 0.9-\theta \\
2 & \theta
\end{array} \\
n_{1}=n_{2}=2 \cdot ; \quad n=(2,2) \\
E\left(N_{3} \mid \theta\right)=1(0.9-\theta)+2 \theta=0.9+\theta \\
\pi(\theta \mid N=n)=\frac{f(n \mid \theta) \pi(\theta)}{(f(n \mid \theta) \pi(\theta) d \theta}=\frac{\theta^{2}\left(\frac{\theta^{2}}{0.039}\right)}{\int f(n \mid \theta) \pi(\theta) d \theta}=\frac{\theta^{4}}{C} \\
C=\int_{0.2}^{0.5} \theta^{4} d \theta=\left[\frac{\theta^{5}}{5}\right]_{0.2}^{0.5}=\frac{1}{5}\left[0.5^{5}-0.2^{5}\right] \\
E\left(\left.N_{3}\right|_{N=n}\right)=\int E\left(N_{3} \mid \theta\right) \pi\left(\left.\theta\right|_{N=n}\right) d \theta \\
=\int(0.9+\theta) \frac{\theta^{4}}{c} d \theta=\frac{1}{C}\left[\int 0.9 \theta^{4} d \theta+\int 0^{5} d \theta\right] \\
=\frac{1}{C}\left[0.9 C+\frac{1}{6}\left(0.5^{6}-0.2^{6}\right)\right]=\ldots=1.3193
\end{gathered}
$$

Ex2

- $<y(1)$
$0<x<1$,

$$
\begin{aligned}
& f_{x}(x)=\int_{x}^{1} 8 x y d y=8 x\left[\frac{y^{2}}{2}\right]_{x}^{1}=4 x\left(1-x^{2}\right) . \\
& \left.\Rightarrow \quad f_{y}\right|_{x}\left(\left.y\right|_{x}\right)=\frac{8 x y}{4 x\left(1-x^{2}\right)}=\frac{2 y}{1-x^{2}}, 0<x<y<1
\end{aligned}
$$

$$
\begin{aligned}
E(Y \mid X=x) & =\int_{x}^{1} y\left(\frac{2 y}{1-x^{2}}\right) d y=\frac{2}{1-x^{2}}\left[\frac{y^{3}}{3}\right]_{x}^{1} \\
& =\frac{2}{3\left(1-x^{2}\right)}\left(1-x^{3}\right), \quad 0<x<1
\end{aligned}
$$

Ex 3

$$
\begin{aligned}
\Rightarrow & \left\{\begin{array}{l}
E(Y \mid x)=\alpha x \\
V(Y \mid x)=\beta^{2} x^{2}
\end{array}\right. \\
E(Y) & =E(E(Y \mid x))=E(\alpha x)=\alpha \lambda \\
V(Y) & =V(E(Y \mid x))+E(V(Y \mid x)) \\
& =V(\alpha x)+E\left(\beta^{2} x^{2}\right) \\
& =\alpha^{2} \lambda+\beta^{2}\left[(E x)^{2}+V x\right] \\
& =\alpha^{2} \lambda+\beta^{2}\left(\lambda^{2}+\lambda\right)
\end{aligned}
$$

