

College of Science. Department of Statistics & Operations Research

Second Midterm Exam Academic Year 1443-1444 Hijri- First Semester

معلومات الامتحان Exam Information					
Course name	Credibility			اسم المقرر	
Course Code	Actu 465			رمز المقرر	
Exam Date	2021-11-08	1443-04-03		تاريخ الامتحان	
Exam Time	10:	00 AM		وقت الامتحان	
Exam Duration	2 hours		ساعتان	مدة الامتحان	
Classroom No.				رقم قاعة الاختبار	
Instructor Name				اسم استاذ المقرر	

معلومات الطالب Student Information				
Student's Name				اسم الطالب
ID number				الرقم الجامعي
Section No.				رقم الشعبة
Serial Number				الرقم التسلسلي
General Instructions:				تعليمات عامة:

- Your Exam consists of PAGES (except this paper)
- عدد صفحات الامتحان
 2 صفحة. (بإستثناء هذه الورقة)
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
 - •

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4				
5				
6				
7				
8				

Exercise 1 The Slippery Rock Insurance Company is reviewing its rates. It wants the expected number of claims required for full credibility to be based on a probability level of 90% and a range parameter of 5%. It estimates that individual claim losses Y are mutually independent and identically distributed according to the probability density function

$$f(x) = \frac{1}{200,000}$$
, for $0 < x < 200,000$.

Assume that the number of claims follows a Poisson distribution with mean λ .

(a) Show that the variance of aggregate claims, Var(S), is equal to $\lambda(200,000)^2(\frac{1}{2})$.

(b) Assuming that the most recent period of observation contains 1082 claims, show that the credibility factor for that period is Z = 0.866.

Exercise 2 Assume there are two different types of drivers, good (G) and bad drivers (B). The variable X is the number of claims in any one year.

x	$\Pr(x G)$	$\Pr(x B)$	
0	0.7	0.5	P(G) = 0.75
1	0.2	0.3	P(B) = 0.25
2	0.1	0.2	

Suppose a policyholder had 0 claims the first year and 1 claim the second year.

Determine

a) The posterior probability $\pi(G|x_1, x_2)$

b) Determine the Bayesian estimate of this insured's claim count in the next (third) policy year.

 $0.279 \quad 0.379 \quad 0.479 \quad 0.579$

Exercise 3 A risk class is made up of three equally sized groups of individuals. Groups are classified as Type A, Type B and Type C. Any individual of any type has probability of 0.5 of having no claim in the coming year and has a probability of 0.5 of having exactly 1. Each claim is for amount 1 or 2 when a claim occurs. Suppose that the claim distributions given that a claim occurs, for the three types of individuals are

$$\Pr(\text{claim of amount } x \mid \text{Type } A \text{ and a claim occurs}) = \begin{cases} 2/3 & x = 1\\ 1/3 & x = 2 \end{cases}$$
$$\Pr(\text{claim of amount } x \mid \text{Type } B \text{ and a claim occurs}) = \begin{cases} 1/2 & x = 1\\ 1/2 & x = 2 \end{cases}$$
$$\Pr(\text{claim of amount } x \mid \text{Type } C \text{ and a claim occurs}) = \begin{cases} 5/6 & x = 1\\ 1/6 & x = 2 \end{cases}$$

An insured is chosen at random from the risk class and is found to have a claim of amount 2 in Year 1. Determine the Bayesian estimate of this insured's claim amount in the next policy year.

$$\frac{25}{36} \quad \frac{3}{4} \quad \frac{29}{36} \quad \frac{11}{12}$$

465 Midz Ex $Vars = \lambda \left(\mu \gamma^2 + \delta \gamma^2 \right) = \lambda \left(\left(\frac{2\sigma_0 \sigma_0}{2} \right)^2 + \frac{2\sigma_0 \sigma_0}{12} \right)$ $- (200,000)^{2} (\frac{1/4 + 1/12}{1/4})$ = 1/2 EN: = 1082 (b) $Ni)g = \lambda o (1 + Cy²) = \lambda H²$ = (A.641) 2 (2) + $= \left(\frac{\Lambda,645}{10,00}\right)^{T} \left(1 + \frac{2000^{2}/12}{10,000}\right)$ $= \left(\frac{1.645}{0.05}\right)^{2} \left(1 + \frac{4}{12}\right) = \left(\frac{1.645}{0.05}\right)^{2} \left(\frac{4}{2}\right)^{2}$ $Z = \sqrt{\frac{2}{(2\pi)^{3}}} = \sqrt{\frac{1082}{(2\pi)^{3}}} = 0.8618$ $E_{x2} = \sqrt{\frac{2}{(2\pi)^{3}}} = \sqrt{\frac{1082}{(443)}} = 0.8618$ $E_{x2} = \sqrt{\frac{2}{(2\pi)^{3}}} = \sqrt{\frac{1082}{(443)}} = 0.8618$ $E_{x2} = \sqrt{\frac{2}{(2\pi)^{3}}} = \frac{1082}{(443)} = \frac{1000}{(443)} = \frac{1000}{(440)} = \frac{10$

x=1 1/2 1 NZI 5/6 122 1/6 1 E[X2 | A] zo (1)1+ 1 (12x23)+2(112x13)2 4 1 E (XIB)=0 (1/1+ 2 (12×21+2/1/x 2/2)=3/4 1 = [X | c] = 0 (1/2) + 1 (1/2 × 1/6) + 2 (1/2 × 1/6) = 3/12 $\mathcal{L}(A|_{X=\nu}) = \mathcal{L}(x_{1}, 2|A) \pi(A)$ $\mathcal{L}(x_{1}, 2|A) \pi(A) \mathcal{L}(x_{1}, 2|A) \pi(B) \mathcal{L}(x_{2}, 2|A) \pi(B)$ $1_{D} = (16)(13) + (14)(13) + (1/12)(13) = 16$ 2= & Alx=2]= 16×1/3-1/3 2 P(B) anon) = 1/1/2 = 1/2 $2 R(C|x_{1}) = \frac{1}{1/2} \times \frac{1}{3} = \frac{1}{6}$ ZE(X2(xer) = 2/3(1/3)+3/4×1/2+72×1/6= = 0,6944