College of Science.
Department of Statistics \& Operations Research

First Midterm Exam
Academic Year 1442-1443 Hijri- First Semester

Student Information معلومات الطالب

ID number		الجامبح
Section No.		رقم الشمبة
Serial Number		الرقم التّلسلي

General Instructions:

- Your Exam consists of 4 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.

هـا الجزء خاص بأستاذ المادة
This section is ONLY for instructor

$\#$	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4				
5				
8				

Exercise 1 The criterion for the number of exposures needed for full credibility is changed from requiring \bar{X} to be within $0.05 E(\bar{X})$ with probability 0.90 , to requiring \bar{X} to be within $k E(\bar{X})$ with probability 0.95 . Find the value of k that results in no change in the standard for full credibility for number of exposures of X.
a) 0.0524
b) 0.0548
c) 0.0572
d) 0.0596
e) 0.0620

Exercise 2 Total claim amount per period S follows a compound Poisson claims distribution. The standard for full credibility for total claims in a period S based on number of claims is 1500 claims. It is then discovered that an incorrect value of the coefficient of variation for the severity distribution Y was used to determine the full credibility standard. The original coefficient of variation used was 0.6211 , but the corrected coefficient of variation for Y is 0.5200 . Find the corrected standard for full credibility for S based on number of claims.
a) 1300
b) 1325
c) 1350
d) 1375
e) 1400

Exercise 3 Let S_{j} the total losses experienced by a policyholder at period $j=$ $1, \ldots, n$ and S_{j} is a coumpound Poisson and loss amounts have mean 5 and variance 100. Determine the expected total number of claims required for full credibilty if
a) The aggregate losses must be within 3% of expected aggregate losses 95% of the time.
b) The actual number of claims must be within 3% of the expected number of claims with probability of 95%.

Exercise 4 We have:
(i) $S=\sum_{j=1}^{N} X_{j}$ and the X_{j} are independent and independent of N.
(ii) X_{j} is a Pareto distribution with parameters $(3,3)$.
(iii) N is negative binomial with parameters ($r, 2$).

Calculate the minimum value that r must have for S to be within 5% of the expected value with 90%. You may use the normal approximation.

Exercise 5 Assume there are two different types of drivers, good (G) and bad drivers (B). The variable X is the number of claims in any one year.

x	$P(x \mid G)$	$P(x \mid B)$	
0	0.7	0.5	$P(G)=0.75$
1	0.2	0.3	$P(B)=0.25$
2	0.1	0.2	

Suppose a policyholder had 0 claims the first year and 1 claim the second year. Determine
a) The posterior probability $\pi\left(G \mid x_{1}, x_{2}\right)$
b) Determine the Bayesian estimate of this insured's claim count in the next (third) policy year.

Exercise 6 A risk class is made up of three equally sized groups of individuals. Groups are classified as Type A, Type B and Type C. Any individual of any type has probability of 0.5 of having no claim in the coming year and has a probability of 0.5 of having exactly 1 .

$$
\begin{aligned}
& P(\text { claim of amount } x \mid \text { Type } A \text { and a claim occurs })= \begin{cases}2 / 3 & x=1 \\
1 / 3 & x=2\end{cases} \\
& P(\text { claim of amount } x \mid \text { Type } B \text { and a claim occurs })= \begin{cases}1 / 2 & x=1 \\
1 / 2 & x=2\end{cases} \\
& P(\text { claim of amount } x \mid \text { Type } C \text { and a claim occurs })= \begin{cases}5 / 6 & x=1 \\
1 / 6 & x=2\end{cases}
\end{aligned}
$$

An insured is chosen at random from the risk class and is found to have a claim of amount 2 in Year 1. Determine the Bayesian estimate of this insured's claim amount in the next policy year.
a) $\frac{25}{36}$
b) $\frac{3}{4}$
c) $\frac{29}{36}$
d) $\frac{11}{12}$

A.2.3 Two-parameter distributions

A.2.3.1 Pareto (Pareto Type II, Lomax) - α, θ

$$
\begin{aligned}
f(x) & =\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}} \quad F(x)=1-\left(\frac{\theta}{x+\theta}\right)^{\alpha} \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)}, \quad-1<k<\alpha \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} k!}{(\alpha-1) \cdots(\alpha-k)}, \quad \text { if } k \text { is an integer } \\
\operatorname{VaR}_{p}(X) & =\theta\left[(1-p)^{-1 / \alpha}-1\right] \\
\mathrm{TVaR}_{p}(X) & =\operatorname{VaR}_{p}(X)+\frac{\theta(1-p)^{-1 / \alpha}}{\alpha-1}, \quad \alpha>1 \\
\mathrm{E}[X \wedge x] & =\frac{\theta}{\alpha-1}\left[1-\left(\frac{\theta}{x+\theta}\right)^{\alpha-1}\right], \quad \alpha \neq 1 \\
\mathrm{E}[X \wedge x] & =-\theta \ln \left(\frac{\theta}{x+\theta}\right), \quad \alpha=1 \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\frac{\theta^{k} \Gamma(k+1) \Gamma(\alpha-k)}{\Gamma(\alpha)} \beta[k+1, \alpha-k ; x /(x+\theta)]+x^{k}\left(\frac{\theta}{x+\theta}\right)^{\alpha}, \quad \text { all } k \\
\text { mode } & =0
\end{aligned}
$$

A.2.3.2 Inverse Pareto- τ, θ

$$
\begin{aligned}
f(x) & =\frac{\tau \theta x^{\tau-1}}{(x+\theta)^{\tau+1}} \quad F(x)=\left(\frac{x}{x+\theta}\right)^{\tau} \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k} \Gamma(\tau+k) \Gamma(1-k)}{\Gamma(\tau)}, \quad-\tau<k<1 \\
\mathrm{E}\left[X^{k}\right] & =\frac{\theta^{k}(-k)!}{(\tau-1) \cdots(\tau+k)}, \quad \text { if } k \text { is a negative integer } \\
\operatorname{VaR}_{p}(X) & =\theta\left[p^{-1 / \tau}-1\right]^{-1} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \tau \int_{0}^{x /(x+\theta)} y^{\tau+k-1}(1-y)^{-k} d y+x^{k}\left[1-\left(\frac{x}{x+\theta}\right)^{\tau}\right], \quad k>-\tau \\
\text { mode } & =\theta \frac{\tau-1}{2}, \tau>1, \text { else } 0
\end{aligned}
$$

A.2.3.3 Loglogistic (Fisk) - γ, θ

$$
\begin{aligned}
f(x) & =\frac{\gamma(x / \theta)^{\gamma}}{x\left[1+(x / \theta)^{\gamma}\right]^{2}} \quad F(x)=u, \quad u=\frac{(x / \theta)^{\gamma}}{1+(x / \theta)^{\gamma}} \\
\mathrm{E}\left[X^{k}\right] & =\theta^{k} \Gamma(1+k / \gamma) \Gamma(1-k / \gamma), \quad-\gamma<k<\gamma \\
\operatorname{VaR}_{p}(X) & =\theta\left(p^{-1}-1\right)^{-1 / \gamma} \\
\mathrm{E}\left[(X \wedge x)^{k}\right] & =\theta^{k} \Gamma(1+k / \gamma) \Gamma(1-k / \gamma) \beta(1+k / \gamma, 1-k / \gamma ; u)+x^{k}(1-u), \quad k>-\gamma \\
\text { mode } & =\theta\left(\frac{\gamma-1}{\gamma+1}\right)^{1 / \gamma}, \quad \gamma>1, \text { else } 0
\end{aligned}
$$

B.2.1.2 Geometric- β

$$
\begin{aligned}
p_{0} & =\frac{1}{1+\beta}, \quad a=\frac{\beta}{1+\beta}, \quad b=0 & p_{k}=\frac{\beta^{k}}{(1+\beta)^{k+1}} \\
\mathrm{E}[N] & =\beta, \quad \operatorname{Var}[N]=\beta(1+\beta) & P(z)=[1-\beta(z-1)]^{-1} .
\end{aligned}
$$

This is a special case of the negative binomial with $r=1$.
B.2.1.3 Binomial- $q, m,(0<q<1, m$ an integer $)$

$$
\begin{aligned}
p_{0} & =(1-q)^{m}, \quad a=-\frac{q}{1-q}, \quad b=\frac{(m+1) q}{1-q} \\
p_{k} & =\binom{m}{k} q^{k}(1-q)^{m-k}, \quad k=0,1, \ldots, m \\
\mathrm{E}[N] & =m q, \quad \operatorname{Var}[N]=m q(1-q) \quad P(z)=[1+q(z-1)]^{m} .
\end{aligned}
$$

B.2.1.4 Negative binomial- β, r

$$
\begin{aligned}
p_{0} & =(1+\beta)^{-r}, \quad a=\frac{\beta}{1+\beta}, \quad b=\frac{(r-1) \beta}{1+\beta} \\
p_{k} & =\frac{r(r+1) \cdots(r+k-1) \beta^{k}}{k!(1+\beta)^{r+k}} \\
\mathrm{E}[N] & =r \beta, \quad \operatorname{Var}[N]=r \beta(1+\beta) \quad P(z)=[1-\beta(z-1)]^{-r} .
\end{aligned}
$$

B. 3 The ($a, b, 1$) class

To distinguish this class from the $(a, b, 0)$ class, the probabilities are denoted $\operatorname{Pr}(N=k)=p_{k}^{M}$ or $\operatorname{Pr}(N=$ $k)=p_{k}^{T}$ depending on which subclass is being represented. For this class, p_{0}^{M} is arbitrary (that is, it is a parameter) and then p_{1}^{M} or p_{1}^{T} is a specified function of the parameters a and b. Subsequent probabilities are obtained recursively as in the $(a, b, 0)$ class: $p_{k}^{M}=(a+b / k) p_{k-1}^{M}, k=2,3, \ldots$, with the same recursion for p_{k}^{T} There are two sub-classes of this class. When discussing their members, we often refer to the "corresponding" member of the $(a, b, 0)$ class. This refers to the member of that class with the same values for a and b. The notation p_{k} will continue to be used for probabilities for the corresponding ($a, b, 0$) distribution.

B.3.1 The zero-truncated subclass

The members of this class have $p_{0}^{T}=0$ and therefore it need not be estimated. These distributions should only be used when a value of zero is impossible. The first factorial moment is $\mu_{(1)}=(a+b) /\left[(1-a)\left(1-p_{0}\right)\right]$, where p_{0} is the value for the corresponding member of the $(a, b, 0)$ class. For the logarithmic distribution (which has no corresponding member), $\mu_{(1)}=\beta / \ln (1+\beta)$. Higher factorial moments are obtained recursively with the same formula as with the $(a, b, 0)$ class. The variance is $(a+b)\left[1-(a+b+1) p_{0}\right] /\left[(1-a)\left(1-p_{0}\right)\right]^{2}$.For those members of the subclass which have corresponding $(a, b, 0)$ distributions, $p_{k}^{T}=p_{k} /\left(1-p_{0}\right)$.

Mid 1
Credibility sol.
Exs

$$
\begin{aligned}
& \text { as } \quad n=d_{0}^{1} c_{x}^{2}=d_{0}^{2} c_{x}^{2} \\
& \Leftrightarrow \quad d_{0}^{1}=d_{0}^{2} \Leftrightarrow\left(\frac{1.645}{0.05}\right)^{2}=\left(\frac{1.96}{k}\right)^{2} \\
& \Leftrightarrow \quad k=0.05\left(\frac{1.96}{1.645}\right)=0.0569
\end{aligned}
$$

Ex2

$$
\begin{aligned}
\left(\sum N_{i}\right)_{1} & =\lambda_{0}\left(1+C_{Y_{1}}^{2}\right) \\
\Leftrightarrow \quad 1500 & =\lambda_{0}\left(1+(0.6211)^{2}\right) \\
\Leftrightarrow \quad \lambda_{0} & =\frac{1500}{1+(0.6211)^{2}} \\
\left(\sum N i\right)_{2} & =\lambda_{0}\left(1+C_{Y_{2}}^{2}\right) \\
& =\frac{1500}{1+(0.6211)^{2}}\left(1+0.52^{2}\right)=1375
\end{aligned}
$$

$$
\text { with } S=\sum_{1}^{N} x_{i} S_{2}-S_{N} \quad \mu_{x}=5 ; \sigma_{x}^{2}=100
$$

(a)

$$
\begin{aligned}
(\text { LNo }) & =d_{0}\left(1+C_{y}^{2}\right) \\
& =\left(\frac{1.96}{0.03}\right)^{2}\left(1+\frac{100}{21}\right)=21,342
\end{aligned}
$$

(b) $\left(\Sigma N_{0}\right)^{8}=\lambda_{0}=\left(\frac{1,96}{0.03}\right)^{2}=4,268$.

Ex4

$$
S=\sum_{i}^{N} \alpha_{j} \quad \text { witt } \quad x \sim \text { Pareto }(3,3)
$$

$\begin{aligned} & N \sim \operatorname{Neg} \cdot \operatorname{Bin}(r, 2) \quad \mu_{x}=3 / 2, v x= \\ & \mu_{N}=2 r ; \sigma_{N}=6 r .\end{aligned}$

$$
P\left\{-k \quad \frac{s-\mu_{s}}{\mu_{s}}<k\right\}
$$

$$
\begin{aligned}
& \Leftrightarrow P\left\{-h \frac{\mu_{s}}{\sigma_{s}}<\frac{s-\mu_{s}}{\sigma_{s}}<h \frac{\mu_{s}}{\sigma_{s}}\right\} \not \nrightarrow p . \\
& \Leftrightarrow \quad \frac{h \mu_{s}}{\sigma s}=32 h \\
& \mu_{s}=\mu_{N} \mu_{x}=3,2 \\
& \sigma_{s}^{2}=\sigma_{N}{ }^{2} \mu_{x^{2}}+\mu_{N} \sigma_{x}{ }^{2} \\
& =(6 n)(9 / 4)+(2 n)(27 / 4) \\
& =272
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k \mu_{s}}{\sigma_{s}}=\frac{k(3 r)}{\sqrt{27 r}}=z \\
& \Leftrightarrow \frac{9 k^{2} r^{2}}{27 r}=z^{2} \Leftrightarrow \quad r=3\left(\frac{z}{k}\right)^{2}=3 \lambda_{0} \\
&=\left(\frac{1.645}{0.05}\right)^{2}=3,247.23
\end{aligned}
$$

ExS
(a)

$$
\begin{aligned}
\pi\left(G \mid x_{1}, x_{2}\right) & =\frac{e\left(x_{1}=0, x_{2}=1 / G\right) \pi(G)}{e\left(x_{1}=0, x_{2}=1\right)} \\
& =\frac{(0.7)(0.2)(0.75)}{(0.7)(0.2)(0.75)+(0.5 \mid(0.3)(0.25)} \\
& =0.737
\end{aligned}
$$

(b) $E\left[x_{3} \mid x_{1}, x_{2}\right]$?.

$$
\begin{aligned}
& \text { (b) } E\left[x_{3} \mid x_{1}, x_{2}\right]! \\
& E\left[x_{3} \mid \sigma\right]=0.4 \quad E\left[x_{3} \mid B\right]=0.7 \\
& E\left[x_{3} \mid x_{1}, x_{2}\right]=(0.4)(0.737 \mid+(0.7)(0.263)=0.4789
\end{aligned}
$$

Ex6

$$
\begin{gathered}
E\left[X_{2} \mid A\right]=0\left(1 / 2 \left\lvert\,+1\left(1 / 2 \times \frac{2}{3}\right)+2(1 / 2 \times 1 / 3)=2 / 3\right.\right. \\
E\left[X_{2} \mid B\right]=0(1 / 2 \mid+1(1 / 2 \times 1 / 2)+2(1 / 2 \times 1 / 2)=3 / 4 \\
E\left[x_{2} \mid C\right]=0(1 / 2)+1(1 / 2 \times 5 / 6)+2(1 / 2 \times 1 / 6) \\
=7 / 12 .
\end{gathered}
$$

$$
\begin{aligned}
R\left(\left.A\right|_{x_{1}}=2\right) & =\frac{R\left(x_{1}=2(A) R(A)\right.}{R\left(x_{1}=2\right)}=\frac{1 / 6 \times 1 / 3}{R\left(x_{1}=2\right)} \\
R\left(x_{1}=2\right) & =R\left(x_{1}=2(A) R(A)+R\left(x_{1}=2 / B\right) R(A)+R\left(x_{1}=2 \mid C\right) B(C)\right. \\
& =(1 / 6)(1 / 6)+(1 / 4)(1 / 3)+(1 / 12)(1 / 3)=1 / 6
\end{aligned}
$$

$\Rightarrow R|A| x_{1}=2 \left\lvert\,=\frac{1 / 18}{116}=1 / 3\right.$.

$$
\begin{aligned}
& \ell\left(B \mid x_{1}=2\right)=\frac{1 / 12}{1 / 6}=1 / 2 \\
& I\left(C\left(x_{1}=2\right)\right.
\end{aligned}=\frac{1 / 36}{1 / 6}=1 / 6 .
$$

