

College of Science.

Department of Statistics & Operations
Research

كليّة العلوم قسم الإحصاء وبحوث العمليات

Final Exam Academic Year 1443-1444 Hijri- First Semester

معلومات الامتحان Exam Information							
Course name	Credi	اسم المقرر					
Course Code	Actu	رمز المقرر					
Exam Date	2021-12-22	1442-05-18	تاريخ الامتحان				
Exam Time	01: 00 PM		وقت الامتحان				
Exam Duration	2 hours	ساعتان	مدة الامتحان				
Classroom No.			رقم قاعة الاختبار				
Instructor Name			اسم استاذ المقرر				

معلومات الطالب Student Information				
Student's Name		اسم الطالب		
ID number		الرقم الجامعي		
Section No.		رقم الشعبة		
Serial Number		الرقم التسلسلي		
G 11 4		7 1 - 4 9 4		

Ni mi : ...

- Your Exam consists of 1 PAGES (except this paper)
- الورقة)
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4				
5				
6				
7				
8				

Exercise 1 In a portfolio of insurance policies, the number of claims for each policyholder in each year, denoted by N, may be 0, 1, or 2, with the following pf: $f_N(0) = 0.1, f_N(1) = 0.9 - \theta, f_N(2) = \theta$. The prior pdf of Θ is

$$f_{\Theta}(\theta) = \frac{\theta^2}{0.039}$$
 $0.2 < \theta < 0.5$

A randomly selected policyholder has two claims in Year 1 and two claims in Year 2. Determine the Bayes estimate of the expected number of claims in Year 3 of this policyholder.

(1) 1.722 (2) 0.722 (3) 0.322 (4) 1.319

Exercise 2 Let S_j the total losses experienced by a policyholder at period j = 1, 2, ..., n and S_j is a coumpound Poisson and loss amounts have mean 5 and variance 100. Determine the expected total number of claims required for full credibilty if

- a) The aggregate losses must be within 3% of expected aggregate losses 95% of the time.
- b) The actual number of claims must be within 3% of the expected number of claims with probability of 95%.

Final 465 $10 \quad \begin{array}{c} 0 & 0.2 \\ 1 & 0.9 - 0 \\ 2 & 0 \end{array}$ n=12=2; n=(2,2) [N3/0] = 1 (0.9-01+20 = 0.9+0 $\pi \left[\Theta |_{N=n} \right] = \frac{\beta(n|\theta)\pi(\theta)d\theta}{\int \beta(n|\theta)\pi(\theta)d\theta} = \frac{\Theta^2\left(\frac{\Theta^2}{0.039}\right)}{C}$ $C = \int_{2}^{0.5} 0^{4} d\theta = \frac{1}{8} \left[0.5^{5} - 0.2^{5}\right]$ F[N3|N=n]= | E(N310) T(O(N=n) do - [(0.9+0) = do = 1 [] 0.90 do + [3do $E_{XZ} = \sum_{i=1}^{S_{A-..S_{n}}} S_{i} = \sum_{i=1}^{N_{i}} X_{ij}$ 1x=1; 0x2=100 (a) (END) = do (1+ Cy2) $=\left(\frac{1.96}{2.03}\right)^{2}\left(1+\frac{100}{21}\right)=21,342$