

College of Science.

Department of Statistics & Operations
Research

كلية العلوم قسم الإحصاء وبحوث العمليات

Final Exam Academic Year 1442-1443 Hijri- SecondSemester

معلومات الامتحان Exam Information					
Course name	نظرية المصداقية		اسم المقرر		
Course Code	465 رىك		رمز المقرر		
Exam Date	2021-04-25	1443-09-13	تاريخ الامتحان		
Exam Time	09: 00 AM		وقت الامتحان		
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان		
Classroom No.			رقم قاعة الاختبار		
Instructor Name			اسم استاذ المقرر		

معلومات الطالب Student Information			
Student's Name		اسم الطالب	
ID number		الرقم الجامعي	
Section No.		رقم الشعبة	
Serial Number		الرقم التسلسلي	
~		*	

- Your Exam consists of 1 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان _____ صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4				
5				
6				
7				
8				

Exercise 1 For a particular policy, the conditional probability of the annual number of claims given $\Theta = \theta$ ($\theta = 0, 1$) are as follows: For $\theta = 0$,

Number of claims	0	1	2
Probability	4/6	1/6	1/6

and for $\theta = 1$,

Number of claims	0	1	2
Probability	1/4	1/2	1/4

The probability distribution of θ is

θ	0	1
Probability	0.6	0.4

For a sample of 10 years, a total of 10 claims has been observed. Calculate the Buhlmann credibility estimate of the number of claims in Year 11.

$$0.82 \ 0.86 \ 0.89 \ 0.94 \ 0.98$$

Exercise 2 You are given:

- (i) The probability that an insured will have at least one loss during any year is p.
- (ii) The prior distribution for p is uniform on [0, 0.75].
- (iii) An insured is observed for 14 years and has at least one loss every year. Calculate the posterior probability that the insured will have at least one loss during Year 15.

$$0.403$$
 0.503 0.603 0.703 0.803

Hint: consider $Y_i = 1$ if at least one loss occurs during year i, and 0 otherwise.

Exercise 3 Data for a policyholder is known for the past 30 years. During that time, the policyholder's average losses per year were 100. To determine full credibility, you select the values k = 0.05 and p = 0.95. The standard deviation of losses in each year is 30. Use limited fluctuation credibility theory to determine whether these data are fully credible.

X 1 0 1 TOOK 0.6 0=0 0 4/6 1/4 Final soll 2 1/6 1/4 URA $\mu(0)$, $\int_{1}^{1/2} \mu = E[\mu(0)] = 0.3 + 0.4 = 0.7$ a= V(plo))= F(pron)-p2 $\begin{array}{l} = \frac{1}{4}(0.6) + .1(0.4) - 0.7^{2} = 0.06 \\ 0 = F(x^{2}/0) \\ 0 = F(x^{2}/0) + .1(0.4) - 0.7^{2} = 0.06 \\ 0 = F(x^{2}/0) - 1 = 0.06 \\ 0$ 0.86 12 = 0.55 = 9.166 = 55/6 $Z = \frac{10}{10+10} = 0.52 = \frac{60}{117}$ B.C = Z. x + (1-2) p = Z (1)+ (1-2) 0.7 _ 0.856. 20.86

f(P)= 1/3 = 4/3 , - > & p & 3/4 T[x7,4 | 7,31-= 2(43,1) = [[Y=1 | y1-=y14=1] = [Y=1]y1-=y14=1] = [Y=1]y1-=y14=1] dp T(6 | y1-=414=1) = f(y1-=474=1/P) T(P) $= \frac{\int_{3/4}^{14} x^{4/3}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/3}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/3}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/3}}{\int_{3/4}^{3/4} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/3}}{\int_{3/4}^{14} \int_{15}^{14} x^{4/3}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/4}}{\int_{3/4}^{14} \int_{15}^{14} x^{4/4}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/4}}{\int_{3/4}^{14} \int_{15}^{14} x^{4/4}} = \frac{\int_{3/4}^{14} \int_{15}^{14} x^{4/4}}{\int_{3/4}^{14} \int_{15}$ $=\frac{11}{16}(3/4)=0.303$ Ex3 n=30; k=0.05; &=1.96 $n_y = \lambda_0 C_x^2 = \frac{1.96}{0.01}^2 \times \frac{30^2}{100^2} = 136$ $n_y = \lambda_0 C_x^2 = \frac{1.96}{0.01}^2 \times \frac{30^2}{100^2} = 136$