King Saud University	College of Sciences			Department of Mathematics
Final Examination	Math 465	Semester II	$1441-1442$	Time: 4 H

الضوابط التتضيمية لـلاختبارات المنزلية Take Home Exam الخاصة بـالطلاب.
1- على الطلاب ضرورة الاطلاع على كل مـا بخص الاختبارات من تعليمات سواء عن طريق البريا الإلكتروني وصفحة التمليهات وِّ الاختبار.
 هيئة التدريس.

ضونــــا) ,

 وإلا ستتبر إقّتباسا يؤثر على درجة الطالب.

Exercise 1 For a portfolio of independent risks, you are given:
(i) The risks are divided into two classes, class A and class B.
(ii) Equal numbers of risks are in class A and class B.
(iii) For each class, the probability of having exactly one claim during the year is 10% and the probability of having 0 claim is 90%. All claims for class A are of size 4. All claims for class B are of size d, an unknown quantity.
An individual from a randomly chosen risk class is observed for one year and the total loss is observed. We want to determine the Buhlmann credibility estimate for the expected loss in the following year. Calculate the limit of the Buhlmann credibility factor (Z) as d approaches infinity.

Exercise 2 For a portfolio of independent risks, you are given:
(i) The risks are divided into two classes, class A and class B.
(ii) Equal numbers of risks are in class A and class B.
(iii) For each risk in class A, each period's losses are exponentially distributed with mean 1. For each risk in class B, each period's losses are exponentially distributed with mean β. A risk is selected at random for one period and is found that losses equal 1. Calculate the limit of the Buhlmann credibility estimate for losses of the second period as the value of β approaches 0 .

Exercise 3 Given a first observation with a value of 3, the Buhlmann credibility estimate for the expected value of the second observation is $5 / 2$. Given the first two observations each having value of 3, the Buhlmann credibility estimate for the expected value of the third observation is $8 / 3$. Find the Buhlmann credibility estimate for the expected value of the fourth observation if the first three observations are each 3 .

Exercise 4 You are given:
(i) The annual number of claims X for each policyholder is a random variable with $\operatorname{pmf} \operatorname{Pr}(X=x \mid \Theta=\theta)=\theta(1-\theta)^{x}, x=0,1,2, \ldots$
(ii) The distribution of θ across all policyholders has probability density function:

$$
u(\theta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}, 0<\theta<1
$$

(a) Calculate the hypothetical mean $E(X \mid \Theta=\theta)$.
(b) Calculate the collective premium $E(X)$.
(c) Calculate the posterior distribution of Θ after n years observations X_{1}, \ldots, X_{n}.

Credibility ACTU 465 final exam.
Ext

$$
k=\frac{v}{a}=\frac{E(V(x \mid \theta))}{V(E(x \mid \theta))}
$$

$$
\begin{aligned}
& \mu(\theta)=E(x \mid \theta)<\begin{array}{l}
0.1 \times 4-\text { for } \theta=A \\
0.1 \times d \text { for } \theta=B .
\end{array} \\
& \mu=E(\mu(\theta))=\frac{0.1}{2}(4+d) \text {. } \\
& \mu^{2}(\theta)<\begin{array}{ll}
0.1^{2} \times 4^{2} & \text { for } \theta=A \\
0.1^{2} \times d^{2} & \text { for } \theta=B
\end{array} \\
& E\left(\mu^{2}(\theta)\right)=\frac{0 \cdot 1^{2}}{2}\left(4^{2}+d^{2}\right) \text {. } \\
& a=E\left(\mu^{2}(\theta)\right)-\mu^{2}=\frac{0.1^{2}}{2}\left(4^{2}+d^{2}\right)-\frac{0.1^{2}}{4}(4+d)^{2} \\
& =0.0025 d^{2}-0.02 d+\frac{0.1^{2}}{4}(\underbrace{32+2 d^{2}-16-d^{2}-8}_{\left(d^{2}-4\right)^{2}} d) \\
& V(x \mid \theta)=E\left(x^{2}(\theta)-\mu^{2}(\theta) \quad(d-4)\right. \\
& \begin{array}{l}
=\begin{array}{l}
0.1 \times 16-0.1^{2} \times 16=0.09 \times 16
\end{array} \quad(\theta=A) \\
0.1 \times d^{2}-0.1^{2} \times d^{2}=0.44 \times 9 \times d^{2} \quad(\theta=B) \\
\frac{0.09}{2}\left(16+d^{2}\right)=0.72+0.045 d^{2}
\end{array} \\
& v=\frac{0.09}{2}\left(16+d^{2}\right)=0.72+0.045 d^{2} \\
& k=\frac{0.09}{2}\left(16+d^{2}\right) \times \frac{4}{(0.1)^{2}(d-4)^{2}}=2 \frac{0.09}{0.01} \frac{16+d^{2}}{(d-4)^{2}} \\
& k \underset{d \rightarrow+\infty}{ } 18(? ?) \Rightarrow z=\frac{1}{1+k} \underset{k \rightarrow+\infty}{ } \frac{1}{19} \\
& \lim _{d \rightarrow+\infty}=\frac{2(0.09)}{0.01}\left(\frac{1}{1}\right) \\
& =18
\end{aligned}
$$

Ex 2
1/2 $x \sim \operatorname{Exp}($ mean $=1) \quad$ for $O=A$
1/2 $x-\operatorname{Eap}($ mean $=\beta)$ for $\theta=B$

$$
\begin{aligned}
& B C=z \times 1+(1-z) \times \mu \\
& \mu(\theta)=E(x \mid \theta)=\left\langle\begin{array}{ll}
1 & (\theta=A \\
\beta & (\theta=B)
\end{array}\right. \\
& \mu=E(\mu(\theta))=\frac{1}{2}(1+\beta) \xrightarrow[\beta \rightarrow 0]{\longrightarrow} d / 2 \\
& v(\theta)=V(x \mid \theta)=>1 \quad(\theta=A) \\
& v=E(v(0))=\frac{1}{2}\left(1+\beta^{2}\right) \text {. } \\
& a=V(\mu(\theta))=\frac{1}{2}\left(1+\beta^{2}\right)-\frac{1}{4}(1+\beta)^{2} \\
& =\frac{1}{4}\left(2+2 \beta^{2}-1-\beta^{2}-2 \beta\right)=\frac{1}{4}(\beta-1)^{2} \\
& k=\frac{v}{a}=\frac{2\left(1+\beta^{2}\right)}{(\beta-1)^{2}} \underset{\beta \rightarrow 0}{\longrightarrow} 2 \\
& \Rightarrow Z=\frac{1}{1+k} \xrightarrow[\beta \rightarrow 0]{ } 1 / 3 \\
& B C=2 \times 1+(1-2) \times \mu \underset{\beta \rightarrow 0}{\longrightarrow} \frac{1}{3}(1)+\frac{2}{3}\left(\frac{1}{2}\right)=\frac{2}{3}
\end{aligned}
$$

Ex 3

$$
\begin{aligned}
B C(t-2) & =z_{1} \times 3+\left(1-z_{1}\right) \times \mu=5 / 2 \\
\text { with } & z_{1}=\frac{1}{1+k} \\
B C(t=3) & =z_{2} \times 3+\left(1-z_{2}\right) \times \mu=8 / 3
\end{aligned}
$$

with $z_{2}=\frac{2}{2+R}$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\frac{1}{1+k} 3+\frac{k}{1+k} \mu=5 / 2 \\
\frac{2}{2+k} 3+\frac{k}{2+k} \mu=8 / 3
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
3+k \mu=\frac{5}{2}(1+k) \\
6+k \mu=\frac{8}{3}(2+k) \\
(2)-(1) \Rightarrow k=\frac{16}{3}+\frac{8}{3} k-\frac{5}{2}-\frac{5}{2} k \\
3=\frac{17}{6}+\frac{k}{6} \Rightarrow \frac{k}{6}=\frac{1}{6} \Rightarrow k=1
\end{array}\right.
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \Rightarrow \quad \mu=\frac{5}{2}(2)-3=2 \\
& B C(t=4)=z_{3} \times 3+\left(1-z_{3}\right) \times \mu
\end{aligned}
$$

with $z_{3}=\frac{3}{3+k}=\frac{3}{4}$.

$$
\Rightarrow B C(t=4)=\frac{3}{4}(3)+\frac{1}{4}(2)=\frac{11}{4}=2.75
$$

Ex 4 (Bonus)
(a)

$$
\begin{aligned}
E(x \mid \theta) & =\sum_{0}^{\infty} x P(x \mid \theta)=\sum_{0}^{\infty} x \theta(1-\theta)^{x} \\
& =\theta(1-\theta) \sum_{0}^{\infty} x(1-\theta)^{x-1}=-\theta(1-\theta)\left(\sum_{0}^{\infty}(1-\theta)^{x}\right)^{\prime} \\
& =-\theta(1-\theta)\left(\frac{1}{1-(1-\theta)}\right)^{\prime}=-\theta(1-\theta)\left(-1 / \theta^{2}\right) \\
& =\frac{1-\theta}{\theta}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& =\frac{1-\theta}{\theta} \\
E(x) & =E(E(x \mid \theta))=\int \frac{1-\theta}{\theta} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} d \theta \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int \theta^{\alpha-2}(1-\theta)^{\beta} d \theta=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha-1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta)} \\
& =\frac{\Gamma(\alpha-1)}{\Gamma(\alpha)} \frac{\Gamma(\beta+1)}{\Gamma(\beta)}
\end{aligned}
$$

Using $\Gamma(x+1)=x \Gamma(x) \quad\left(\begin{array}{l}\text { not } \Gamma(\alpha)=(\alpha-1)!\text { since } \alpha \\ \text { may not belong tr not ural }\end{array}\right.$ we have $E(x)=\frac{\beta}{\alpha-1} \quad$ may not belong to natural
(c) $u\left(\theta \mid x_{1,-,} x_{n}\right)=\frac{P\left(x_{1},, x_{n} \mid \theta\right) u(\theta)}{P\left(x_{1,-,} x_{n}\right)}=\frac{\theta^{n}(1-\theta)^{\sum_{1}} x_{i} u(\theta)}{P\left(x_{1},, x_{n}\right)}$

$$
\simeq \theta^{\alpha+n-1}(1-\theta)^{\beta+\sum x_{i}-1}
$$

Hence

$$
\{\underbrace{\left\langle u\left(\left.\theta\right|_{1,-,} x_{n}\right)=\frac{\Gamma\left(\alpha+n+\beta+\sum_{1}^{n} x_{i}\right)}{\Gamma(\alpha+n) \Gamma\left(\beta+\sum_{1}^{n} x_{i}\right)} \theta^{\alpha+n-1}(1-\theta)^{\beta+\sum x_{i}-1}\right.}_{\text {is }}
$$

(1) $\left.\right|_{x_{\Delta},-1} x_{n}$ is $\operatorname{Beta}\left(\tilde{\alpha}=\alpha+n, \hat{\beta}=\beta+\sum_{1}^{n} x_{i}\right)$

