King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2019-2020
Academic Year (H) 1441
Bachelor AFM: M. Eddahbi

Solution of Quiz 2 November 20, 2019 ACTU-462 from 4:45 to 6:15 PM

Quiz 2

1. You are given: (i) The future lifetimes of (40) and (50) are independent. (ii) The survival function for (40) is based on a constant force of mortality, $\mu=0.05$. (iii) The survival function for (50) follows De Moivre's law with $\omega=110$.
Calculate the probability that (50) dies within 10 years and dies before (40).
$\left(\right.$ Hint $\left.{ }_{t} q_{x: y}=\int_{0}^{t} \mathrm{P}\left(T_{y}>T_{x} \mid T_{x}=u\right) f_{x}(u) \mathrm{d} u=\int_{0}^{t} \mathrm{P}\left(T_{y}>u \mid T_{x}=u\right) f_{x}(u) \mathrm{d} u\right)$

Solution:

1. We need to compute ${ }_{10} q_{50: 40}$ which is given by definition and independence by

$$
{ }_{10} q_{50: 40}=\int_{0}^{10} \mathrm{P}\left(T_{40}>u \mid T_{50}=u\right) f_{50}(u) \mathrm{d} u=\int_{0}^{10}{ }_{u} p_{40} f_{50}(u) \mathrm{d} u
$$

where

$$
\mathrm{f}_{50}(t)=\frac{1}{110-50}=\frac{1}{60} \text { for } 0<t<60
$$

Therefore,

$$
{ }_{10} q_{50: 40}=\frac{1}{60} \int_{0}^{10} e^{-0.05 t} \mathrm{~d} t=\frac{1}{60} \frac{1-e^{-0.5}}{0.05}=\mathbf{0 . 1 3 1 1 5 6} .
$$

