King Saud University
Academic Year (G) 2018-2019
College of Sciences
Mathematics Department

Academic Year (H) 1439-1440

Bachelor AFM: M. Eddahbi

Quiz 1 ACTU 362, October 13, 2019 from 4:45 to 6:15 PM

Problem

1. If $\ell_{x}=100\left(k-\frac{1}{2} x\right)^{\frac{2}{3}}$ and $\mu_{50}=\frac{1}{48}$ what is the value of k ?
2. You are given $\mu_{x}=\frac{2 x}{\left(10,000-x^{2}\right)}$ for $0 \leq x<100$. Determine q_{x}.
3. Calculate $\stackrel{\circ}{e}_{20}$ given that

$$
S_{0}(t)=\left(\frac{50}{50+t}\right)^{3}
$$

4. Express the probabilities associated with the following events in actuarial notation.
(a) A person age 10 now survives to age 35 .
(b) A new born infant dies no later than age 40 .
(c) A person age 40 now survives to age 50 but dies before attaining age 65 .

Solution:

1. We have

$$
S_{0}(t)={ }_{t} p_{0}=\frac{\ell_{x}}{\ell_{0}}=\frac{100\left(k-\frac{1}{2} t\right)^{\frac{2}{3}}}{100 k^{\frac{2}{3}}}=\frac{\left(k-\frac{1}{2} t\right)^{\frac{2}{3}}}{k^{\frac{2}{3}}}
$$

and

$$
-S_{0}^{\prime}(t)=\frac{1}{2} \frac{2}{3} \frac{\left(k-\frac{1}{2} t\right)^{\frac{2}{3}-1}}{k^{\frac{2}{3}}}=\frac{1}{3} \frac{\left(k-\frac{1}{2} t\right)^{\frac{-1}{3}}}{k^{\frac{2}{3}}} .
$$

Therefore

$$
\mu_{t}=\frac{-S_{0}^{\prime}(t)}{S_{0}(t)}=\frac{\frac{1}{3} \frac{\left(k-\frac{1}{2} t\right)^{\frac{-1}{3}}}{k^{\frac{2}{3}}}}{\frac{\left(k-\frac{1}{2} t\right)^{\frac{2}{3}}}{k^{\frac{2}{3}}}}=\frac{1}{3\left(k-\frac{1}{2} t\right)}=\frac{2}{6 k-3 t}
$$

Hence

$$
\mu_{50}=\frac{1}{48}=\frac{2}{6 k-3 \times 50} \Longleftrightarrow 6 k-150=96 \quad \Longleftrightarrow \quad k=123 .
$$

2. We know

$$
q_{x}=1-p_{x} \text { and } p_{x}=e^{\int_{0}^{1} \frac{-2(x+t)}{\left(10000-(x+t)^{2}\right)^{2}} d t}=e^{\left[\ln \left(10000-(x+t)^{2}\right)\right]_{0}^{1}}=e^{\ln \left(10000-(x+1)^{2}\right)-\ln \left(10000-x^{2}\right)}
$$

Thus

$$
p_{x}=\frac{10000-(x+1)^{2}}{10000-x^{2}}
$$

hence

$$
q_{x}=1-\frac{10000-(x+1)^{2}}{10000-x^{2}}=\frac{2 x+1}{10000-x^{2}}
$$

3. By definiton we have

$$
\stackrel{\circ}{e}_{20}=\int_{0}^{\infty}{ }_{t} p_{20} d t=\int_{0}^{\infty} S_{20}(t) d t=\int_{0}^{\infty} \frac{S_{0}(20+t)}{S_{0}(20)} d t=\int_{0}^{\infty} \frac{S_{0}(20+t)}{S_{0}(20)} d t
$$

and

$$
\frac{S_{0}(20+t)}{S_{0}(20)}=\frac{\left(\frac{50}{70+t}\right)^{3}}{\left(\frac{50}{70}\right)^{3}}=\frac{70^{3}}{(t+70)^{3}}
$$

therefore

$$
\begin{aligned}
\stackrel{\circ}{e}_{20} & =\int_{0}^{\infty} S_{0}(t)=\int_{0}^{\infty} \frac{70^{3}}{(t+70)^{3}} d t=70^{3} \int_{0}^{\infty} \frac{d t}{(t+70)^{3}} \\
& =70^{3}\left[\frac{1}{2} \frac{-1}{(t+70)^{2}}\right]_{0}^{\infty}=\frac{1}{2} \frac{70^{3}}{70^{2}}=35
\end{aligned}
$$

4. We have
(a) The probability that a person age $x=10$ now survives to age $35=10+25$ can be expressed as

$$
S_{10}(25)=\mathrm{P}\left(T_{10} \geq 25\right)={ }_{25} p_{10}
$$

(b) The probability that a new born infant $(x=0)$ dies no later than age $t=40$ can be expressed as

$$
\mathrm{P}\left(T_{0} \leq 40\right)={ }_{40} q_{0}
$$

(c) The probability that a person age 40 now survives to age 50 but dies before attaining age 65 can be expressed as $(x=40, t=50-40=10$, and $u=65-50=15)$

$$
\mathrm{P}\left(10 \leq T_{40} \leq 10+15\right)={ }_{10 \mid 15} q_{40} .
$$

