King Saud University
Academic Year (G) 2019-2020
College of Sciences
Academic Year (H) 1441
Mathematics Department
Model Answer of the first midterm exam ACTU-362 (25\%)

October 7, 2019 (Fall 2019)

Problem 1. (6 marks) The survival function $S_{0}(t)$ of the age-at-death random variable T_{0} is given by

$$
S_{0}(t)=\left(\frac{100}{100+t}\right)^{2} \text { for } t \geq 0
$$

1. (2 mark) Calculate ${ }_{5 \mid} q_{40}$.
2. (2 mark) You are given $S_{10}(25)=0.9$ and $F_{20}(15)=0.05$, calculate $S_{10}(10)$.
3. (2 mark) Given $S_{0}(t)=\sqrt{1-\frac{t}{100}}$, for $0 \leq t \leq 100$, calculate the probability that a life age 36 will die between ages 51 and 64 .

Solution:

1. We know ${ }_{5 \mid} q_{40}={ }_{5} p_{40}-{ }_{6} p_{40}=S_{40}(5)-S_{40}(6)=\frac{S_{0}(45)}{S_{0}(40)}-\frac{S_{0}(46)}{S_{0}(40)}=0.932224-0.919497=\mathbf{0 . 0 1 2 7 2 7}$.
2. We have $S_{10}(10)={ }_{10} p_{10}$. Moreover we have ${ }_{25} p_{10}={ }_{10} p_{10} \cdot{ }_{15} p_{20}={ }_{10} p_{10}\left(1-{ }_{15} q_{20}\right)$,

$$
{ }_{10} p_{10}=\frac{{ }_{25} p_{10}}{\left(1-{ }_{15} q_{20}\right)}=\frac{0.9}{1-0.05}=\mathbf{0 . 9 4 7 3 7}
$$

3. The required probability is given by

$$
\begin{aligned}
P\left(15 \leq T_{36}<28\right) & =S_{36}(15)-S_{36}(28)=\frac{S_{0}(51)-S_{0}(64)}{S_{0}(36)} \\
& =\frac{\sqrt{1-\frac{51}{100}}-\sqrt{1-\frac{64}{100}}}{\sqrt{1-\frac{36}{100}}}=\frac{1}{8}=\mathbf{0 . 1 2 5}
\end{aligned}
$$

Problem 2. (6 marks) The force of mortality μ_{x} is given by

$$
\mu_{x}=\frac{1}{100-x} \text { for } 0 \leq x<100
$$

1. (2 marks) Find $S_{20}(t)$ for $0 \leq t<80$.
2. (2 marks) Compute ${ }_{40} p_{20}$.
3. (2 marks) Find $f_{20}(t)$ for $0 \leq t<80$.

Solution:

1. By definition $S_{20}(t)=e^{-\int_{0}^{t} \mu_{20+u} d u}=e^{-\int_{0}^{t} \frac{1}{80-u} d u}=e^{[\ln (80-u)]_{0}^{t}}=e^{\ln \left(\frac{80-t}{80}\right)}=1-\frac{t}{80}$.
2. We have ${ }_{40} p_{20}=S_{20}(40)=1-\frac{40}{80}=\frac{1}{2}=\mathbf{0 . 5}$.
3. the p.d.f. of T_{20} is given, $f_{20}(t)=-S_{20}^{\prime}(t)=\frac{1}{80}$.

Problem 3. (6 marks) You are given the following life table:

x	90	91	92	93	94	95
ℓ_{x}	1000	950	900	840	c_{2}	700
d_{x}	50	50	60	c_{1}	70	80

1. (2 marks) Find the values of c_{1} and c_{2}
2. (2 marks) Calculate ${ }_{1.4} p_{90}$, assuming uniform distribution of deaths between integer ages.
3. (2 marks) Repeat 2. by assuming constant force of mortality between integer ages.

Solution:

1. We know that $\ell_{x}-\ell_{x+1}=d_{x} \Longleftrightarrow \ell_{x+1}=\ell_{x}-d_{x}$, thus $\ell_{95}=\ell_{94}-d_{94}=700=c_{2}-70$, hence $c_{2}=770$. And $\ell_{94}=\ell_{93}-d_{93}=770=840-c_{1}$, hence $c_{1}=840-770=70$.
2. Under UDD we can write

$$
\begin{aligned}
{ }_{1.4} p_{90} & =p_{90}{ }_{0.4} p_{91}=p_{90}\left(1-{ }_{0.4} q_{91}\right)=p_{90}\left(1-0.4 q_{91}\right) \\
& =\frac{\ell_{91}}{\ell_{90}}\left(1-0.4\left(1-\frac{\ell_{92}}{\ell_{91}}\right)\right)=\frac{950}{1000}\left(1-0.4\left(1-\frac{900}{950}\right)\right)=\mathbf{0 . 9 3}
\end{aligned}
$$

3. Under CFM we can write

$$
{ }_{1.4} p_{90}=p_{90}{ }_{0.4} p_{91}=p_{90} \cdot p_{91}^{0.4}=\frac{\ell_{91}}{\ell_{90}}\left(\frac{\ell_{92}}{\ell_{91}}\right)^{0.4}=\frac{950}{1000}\left(\frac{900}{950}\right)^{0.4}=\mathbf{0 . 9 2 9 6 8}
$$

Problem 4. (6 marks)

1. (2 mark) You are given: $\ell_{[45]}=1000,{ }_{5} q_{[45]}=0.04,{ }_{5} q_{[45]+5}=0.05$. Calculate $\ell_{[45]+10}$.
2. (2 mark) You are given the following extract from a select-and-ultimate mortality table with a 2 -year select period:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	$x+2$
60	80625	79954	78839	62
61	79137	78402	77252	63
62	77575	76770	75578	64

Calculate under UDD ${ }_{0.9} q_{[60]+0.6}$.
3. (2 mark) Select mortality rates for [45] are half of the Illustrative Life Table's mortality rates for a selection period of 3 years and $i=6 \%$. Calculate ${ }_{2 \mid 2} q_{[45]}$.

Solution:

1. We have

$$
\ell_{[45]+10}=\ell_{[45] 10} p_{[45]}=\ell_{[45] 5} p_{[45]}{ }_{5} p_{[45]+5}=\ell_{[45]}\left(1-{ }_{5} q_{[45]}\right)\left(1-{ }_{5} q_{[45]+5}\right)=1000 \times 0.96 \times 0.95=912 .
$$

2. We know that ${ }_{0.9} q_{[60]+0.6}=1-{ }_{0.9} P_{[60]+0.6}$ and

$$
\begin{aligned}
{ }_{0.9} p_{[60]+0.6} & =\frac{1.5 p_{[60]}}{{ }_{0.6} p_{[60]}}=\frac{p_{[60]} \times{ }_{0.5} p_{[60]+1}}{0.6 p_{[60]}}=\frac{p_{[60]}\left(1-0.5 q_{[60]+1}\right)}{1-0.6 q_{[60]}} \\
& =\frac{\frac{\ell_{[60]+1}}{\ell_{[60]}}\left(1-0.5\left(1-\frac{\ell_{62}}{\ell_{[60]+1}}\right)\right)}{1-0.6\left(1-\frac{\ell_{[60]+1}}{\ell_{[60]}}\right)}=\frac{\frac{79954}{80625}\left(1-0.5\left(1-\frac{78839}{79954}\right)\right)}{1-0.6\left(1-\frac{79954}{80625}\right)}=0.9897 .
\end{aligned}
$$

hence ${ }_{0.9} q_{[60]+0.6}=1-0.9897=\mathbf{0 . 0 1 0 3}$.
3. We will calculate ${ }_{2} p_{[45]}$ and ${ }_{2} p_{[45]+2}$. So

$$
{ }_{2} p_{[45]}=p_{[45]} p_{[45]+1}=\left(1-q_{[45]}\right)\left(1-q_{[45]+1}\right)
$$

and

$$
{ }_{2} p_{[45]+2}=p_{[45]+2} p_{[45]+3}=\left(1-q_{[45]+2}\right)\left(1-q_{[45]+3}\right) .
$$

For $q_{[45]}$ and $q_{[45]+1}$ we use half of the ILT rates. Then

$$
{ }_{2} p_{[45]}=(1-0.5(0.004))(1-0.5(0.00431)=0.995849
$$

moreover $q_{[45]+2}=0.5 q_{47}$ but $q_{[45]+3}=q_{48}$ since the selection period ends after 3 years. Mortality for duration 3 and on is no different from standard mortality.

$$
{ }_{2} p_{[45]+2}=(1-0.5(0.00466))(1-0.00504)=0.992642
$$

The answer is

$$
{ }_{2 \mid 2} q_{[45]}={ }_{2} p_{[45]}{ }_{2} q_{[45]+2}={ }_{2} p_{[45]}\left(1-{ }_{2} p_{[45]+2}\right)=0.995849(1-0.992642)=0.0073275
$$

Problem 5. (6 marks)

1. (5 marks) Given $S_{0}(t)=\sqrt{1-\frac{t}{100}}$, for $0 \leq t \leq 100$. Evaluate a. ${ }_{17} p_{19}$, b. ${ }_{15} q_{36},{ }^{\text {c. }}{ }_{15 \mid 13} q_{36}$, d. μ_{36} and e. $E\left[T_{36}\right]$.
2. (1 mark) You are given $\mu_{x}=0.02$ for all $x \geq 0$. Calculate $\operatorname{Var}\left(T_{x}\right)$.

Solution:

1. a. ${ }_{17} p_{19}=S_{19}(17)=\frac{S_{0}(36)}{S_{0}(19)}=\frac{\sqrt{1-\frac{36}{100}}}{\sqrt{1-\frac{19}{100}}}=\frac{8}{9}=\mathbf{0 . 8 8 8 8 9}$.
b. ${ }_{15} q_{36}=1-{ }_{15} p_{36}=1-\frac{S_{0}(51)}{S_{0}(36)}=1-\frac{\sqrt{1-\frac{51}{100}}}{\sqrt{1-\frac{36}{100}}}=\frac{1}{8}=\mathbf{0 . 1 2 5}$.
c. ${ }_{15 \mid 13} q_{36}=S_{36}(15)-S_{36}(28)=\frac{\sqrt{1-\frac{51}{100}}-\sqrt{1-\frac{64}{100}}}{\sqrt{1-\frac{36}{100}}}=\frac{1}{8}=\mathbf{0 . 1 2 5}$.
d. $\mu_{x+t}=-\frac{S_{x}^{\prime}(t)}{S_{x}(t)}$ now take $x=0$ and $t=36$ then $\mu_{36}=-\frac{S_{0}^{\prime}(36)}{S_{0}(36)}=-\frac{-\frac{1}{100} \frac{1}{2}\left(1-\frac{36}{100}\right)^{-0.5}}{\sqrt{1-\frac{36}{100}}}=\mathbf{0 . 0 7 8 1 2 5}$.
e. By definition

$$
\begin{aligned}
E\left[T_{36}\right] & =\int_{0}^{100-36}{ }_{t} p_{36} d t=\int_{0}^{64} \frac{\sqrt{1-\frac{36+t}{100}}}{\sqrt{1-\frac{36}{100}}} d t=\frac{1}{\sqrt{1-\frac{36}{100}}} \int_{0}^{64} \sqrt{1-\frac{36+t}{100}} d t \\
& =\frac{1}{0.8} \int_{0}^{64} \sqrt{1-\frac{36+t}{100}} d t=\frac{34.133}{0.8}=42.666 .
\end{aligned}
$$

2. The case of CFM we have

$$
E\left[T_{x}\right]=\int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{\infty} e^{-0.02 t} d t=\frac{1}{0.02} \int_{0}^{\infty} 0.02 e^{-0.02 t} d t=\frac{1}{0.02}=50
$$

and

$$
E\left[T_{x}^{2}\right]=\int_{0}^{\infty} 2 t{ }_{t} p_{x} d t=\int_{0}^{\infty} 2 t e^{-0.02 t} d t=\frac{2}{0.02} \int_{0}^{\infty} t 0.02 e^{-0.02 t} d t=\frac{2}{0.02} \frac{1}{0.02}=5000
$$

then $\operatorname{Var}\left(T_{x}\right)=5000-50^{2}=2500$.

