Name:

ID:

X For a fully continuous whole life insurance of 1 on (x):
(i) π is the benefit premium.
(ii) L is the loss-at-issue random variable with the premium equal to π.
(iii) L^{*} is the loss-at-issue random variable with the premium equal to 1.25 п.
(iv) $\bar{a}_{\mathrm{x}}=5.0$.
(v) $\delta=0.08$
(vi) $\operatorname{Var}(L)=0.5625$

Calculate the sum of the expected value and the standard deviation of L^{*}.
(A) 0.59 (B) 0.71 (C) 0.86 (D) 0.89 (E) 1.01
(B) We have that

$$
\begin{aligned}
& \pi=\frac{\bar{A}_{x}}{\bar{a}_{x}}=\frac{1-\bar{a}_{x} \delta}{\bar{a}_{x}}=\frac{1-(5)(0.08)}{5}=0.12, \pi^{*}=(1.25) \pi=0.15 \\
& E\left[L^{*}\right]=\bar{A}_{x}-(1.25) \pi \bar{a}_{x}=-(0.25) \pi \bar{a}_{x}=-(0.25)(0.12)(5)=-0.15
\end{aligned}
$$

$$
\operatorname{Var}\left(L^{*}\right)=\operatorname{Var}\left(\bar{Z}_{x}\right)\left(1+\frac{\pi^{*}}{\delta}\right)^{2}=\operatorname{Var}(L) \frac{\left(1+\frac{\pi^{*}}{\delta}\right)^{2}}{\left(1+\frac{\pi}{\delta}\right)^{2}}=0.5625 \frac{\left(1+\frac{0.15}{0.08}\right)^{2}}{\left(1+\frac{0.12}{0.08}\right)^{2}}
$$

$$
\sqrt{\operatorname{Var}\left(L^{*}\right)}=\sqrt{0.5625} \frac{1+\frac{0.15}{0.08}}{1+\frac{0.12}{0.08}}=0.8625
$$

$$
E\left[L^{*}\right]+\sqrt{\operatorname{Var}\left(L^{*}\right)}=-0.15+0.7744565217=0.7125
$$

