Exercise 1 You are given the following select-and-ultimate life table with a two year select period.

x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}]	
90				and	t+1
91	1250		920		$q_{[x]+t} = \frac{t+1}{3}q_{x+t}$
92	1000	900		1	

Calculate $\ell_{[90]+1}$

Solution: By definition

$$\ell_{[90]+1} = \frac{\ell_{[90]+2}}{1 - q_{[90]+1}} = \frac{\ell_{92}}{1 - q_{[90]+1}} = \frac{\ell_{92}}{1 - \frac{2}{3}q_{91}}$$

So we need to find q_{91} . For t = 0, $q_{[91]} = \frac{1}{3}q_{91}$ and

$$\begin{aligned} q_{[91]} &= 1 - \frac{\ell_{[91]+1}}{\ell_{[91]}} = 1 - \frac{1}{\ell_{[91]}} \frac{\ell_{[91]+2}}{1 - q_{[91]+1}} \\ &= 1 - \frac{1}{1250} \frac{920}{1 - \frac{2}{3}q_{92}}. \end{aligned}$$

Moreover $q_{92} = 3q_{[92]} = 3\left(1 - \frac{\ell_{[92]+1}}{\ell_{[92]}}\right) = 3\left(1 - \frac{900}{1000}\right) = 0.3$. Thus

$$q_{91} = 3q_{[91]} = 3\left(1 - \frac{1}{1250}\frac{920}{1 - \frac{0.6}{3}}\right) = 0.24.$$

Finally

$$\ell_{[90]+1} = \frac{\ell_{[90]+2}}{1 - q_{[90]+1}} = \frac{\ell_{92}}{1 - q_{[90]+1}} = \frac{1}{1 - \frac{2}{3}q_{91}} \frac{\ell_{93}}{1 - q_{92}} = \frac{1}{1 - \frac{2}{3} \times 0.24} \times \frac{920}{1 - 0.3} \simeq 1565$$