King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

Solution of Quizzes ACTU-362-372 (10\%)

April 29, 2021

1. Given $\mu_{40.5}=1.35$ calculate $\mu_{40.25}$ and $\mu_{40.75}$ assuming UDD between integral ages.
2. You are given $\int_{0}^{n}{ }_{s} p_{40} d s=30.352$ and $\mu_{40+t}=\frac{0.5}{50-t}$ for all $t<50$. Find n.
3. Assuming UDD between integral ages you are given: x is an integer and $0<s<1$ such that ${ }_{0.25} p_{x+0.3}=0.8$ and ${ }_{s} p_{x+0.5}=0.8$. Find s.
4. A life, age 65, is subject to mortality as described in the following excerpt from a 3-year select-and-ultimate table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}
65	5,000	4,750	4,500	4,200
66	4,800	4,550	4,250	3,800

Complete the following table

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$
65			
66			

5. Calculate p_{70} given $1000 A_{70}=516,1000 A_{71}=530$ and $v=0.95$
6. Calculate $10^{5} A_{40: 2]}^{1(2)}$ using the following information: $i=0.04, p_{40}=0.8$ and $p_{41}=0.75$ and assuming constant force of mortality between integral ages.
7. A life annuity of 1 on (30), is payable at the beginning of each year until age 60 . The annuity payments are certain for the first 10 years. Calculate the actuarial present value of this annuity using ILT with $i=6 \%$.
8. An actuary uses Woolhouse's formula with three terms to approximates values of $\ddot{a}_{60}^{(2)}=10.25$ and $\ddot{a}_{60}^{(4)}=10.05$. Use the same formula, same mortality and interest rate assumptions as the actuary to calculate $\ddot{a}_{60}^{(12)}$.
9. For a special fully discrete whole life insurance on (45): (i) The death benefit is 2000 if death occurs before age 65, otherwise 1000. (ii) Mortality follows the Illustrative Life Table and $i=0.06$. (iii) Expenses are 80% of first year premium and 10% of renewal premium. (iv) Gross premiums, payable annually until death, are determined using the equivalence principle.
(a) Calculate the gross premium.
(b) Calculate the gross premium reserve at time $t=20$.
10. For a whole life policy on (40) with benefits payable at the moment of death: (i) The face amount is 1000 . (ii) Premiums are payable annually for 20 years. (iii) First year expenses are 60% of first year premium plus 100, paid at issue. (iv) Renewal expenses are 5% of premium plus 5 , payable at the beginning of every year. (v) $\bar{A}_{45}=0.305$ (vi) $\ddot{a}_{45}=14$ (vii) $\ddot{a}_{45: 15}=10.2$ (viii) $d=0.05$ (ix) The gross premium reserve at time 5 is 200 . Determine the gross premium.
11. For a fully discrete 20 -year endowment insurance of 10,000 on (45) with a net premium equals to 297.89: (i) Mortality follows the Illustrative Life Table. (ii) $i=0.06$ (iii) Percent of premium expenses are 30% in the first year, 5% in years $2-10$, and 2% in years $11-20$. (iv) Per policy expenses are 100 in the first year and 10 in renewal years. Calculate the expense premium.
12. For a fully discrete 20-year deferred whole life insurance of 1000 on (50), such that Premiums are payable for 20 years and Deaths are Uniformly Distributed between integral ages. Given $i=0.045, q_{59}=0.5$ and ${ }_{9} V=60,{ }_{9.5} V=250$.
Calculate the level net premium for this policy.
13. You are given: (i) $i=0.04$ (ii) $1000 q_{46}=4.24$ (iii) $A_{47: 18}=0.382$. Calculate the FPT reserve at the end of year 2 for a fully discrete 20-year endowment insurance of 10,000 on (45).
14. You are given: (i) $A_{55}=0.305$ (ii) $A_{65}=0.440$ (iii) $1000 q_{55}=6.5$ (iv) $i=0.05$. Consider a fully discrete whole life policy of 100,000 on (55) Calculate the difference $10^{5}\left({ }_{10} V_{55}-{ }_{10} V_{55}^{\mathrm{FPT}}\right)$.
15. For a fully discrete whole life policy of 1000 issued to (65): Mortality follows the Illustrative Life Table and $i=0.06$.
(a) Calculate the first year modified premium, renewal modified premium under the full preliminary term method
(b) Calculate the reserve at the end of year 5.
16. For a fully continuous 20 -year deferred whole life insurance of 10,000 on (45), you are given: (i) $\bar{A}_{65}=0.25821$ (ii) The annual net premium is 71.25 , and is payable for the first 20 years. (iii) $\mu_{x}=0.00015(1.06)^{x}$ and $\delta=0.05$. Use Euler's method

$$
\frac{t+h V^{g}-{ }_{t} V^{g}}{h}=P+\delta_{t} V-\left(b_{t}-{ }_{t} V\right) \mu_{x+t}
$$

with step 0.5 to calculate ${ }_{19} \mathrm{~V}$.
17. G is the gross annual premium for a fully discrete whole life insurance. You are given: (i) No deaths or withdrawals are expected during the first two policy years, (ii) $i=5 \%$, (iii) Expenses are incurred at the beginning of each policy year, (iv) Percent of premium expenses are 7% of G each year. (v) Per policy expenses are 10 for year 1 and 2 for year 2. (vi) the level gross annual premium G equals 100. Calculate ${ }_{2} \mathrm{AS}$.

Solution:

1. Under UDD, we have $\mu_{x+r}=\frac{q_{x}}{1-r q_{x}}$ for all $0<r<1$, so $\mu_{40.5}=1.35=\frac{q_{40}}{1-0.5 q_{40}}$ hence $q_{40}=$ 0.80597, Thus

$$
\mu_{40.25}=\frac{0.80597}{1-0.25 \times 0.80597}=\mathbf{1 . 0 0 9 3} \text { and } \mu_{40.75}=\frac{0.80597}{1-0.75 \times 0.80597}=\mathbf{2 . 0 3 7 7}
$$

2. We have

$$
{ }_{s} p_{40}=e^{-\int_{0}^{s} \frac{0.5}{50-u} d u}=e^{0.5 \ln \left(\frac{50-s}{50}\right)}=\sqrt{1-\frac{s}{50}},
$$

thus

$$
\int_{0}^{n} \sqrt{1-\frac{s}{50}} d s=\frac{100}{3}\left(1-\left(1-\frac{n}{50}\right)^{\frac{3}{2}}\right)=30.352
$$

which gives $n=40$.
3. Under UDD, we know

$$
{ }_{0.25} q_{x+0.3}=\frac{0.25 q_{x}}{1-0.3 q_{x}}=0.2
$$

which gives $q_{x}=0.64516$ and

$$
{ }_{s} p_{x+0.5}=\frac{1}{5}=\frac{s q_{x}}{1-0.5 q_{x}}=s \frac{0.64516}{1-0.5 \times 0.64516}=0.2
$$

hence $s=\mathbf{0 . 2 1}$.
4. We shall use $q_{[x]+k}=1-\frac{\ell_{[x]+k+1}}{\ell_{[x]+k}}$ for $k=0,1,2$.

x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$
65	$1-\frac{475}{500}=1-\frac{19}{20}=\mathbf{0 . 0 5}$	$1-\frac{450}{475}=\frac{1}{19}=\mathbf{0 . 0 5 2 6 3}$	$1-\frac{42}{45}=\frac{1}{15}=\mathbf{0 . 0 6 6 6 7}$
66	$1-\frac{455}{480}=\frac{5}{96}=\mathbf{0 . 0 5 2 0 8}$	$1-\frac{425}{455}=\frac{6}{91}=\mathbf{0 . 0 6 5 9 3}$	$1-\frac{380}{425}=\frac{9}{85}=\mathbf{0 . 1 0 5 8 8}$

5. From whole life insurance recursion we have

$$
A_{70}=v q_{70}+v p_{70} A_{71}=v\left(1-p_{70}\right)+v p_{70} \quad A_{71}=v-p_{70} v\left(1-A_{71}\right)
$$

thus

$$
p_{70}=\frac{v-A_{70}}{v\left(1-A_{71}\right)}=\frac{0.95-0.516}{0.95(1-0.530)}=\mathbf{0 . 9 7 2}
$$

6. The actuarial present value of future benefits is given by

$$
\begin{aligned}
A_{45: 2 \mid}^{1} & =v^{\frac{0}{2}+\frac{1}{2}}{ }_{\frac{0}{2} 1 \frac{1}{2}} q_{40}+v^{\frac{1}{2}+\frac{1}{2}}{ }_{\left.\frac{1}{2} \right\rvert\, \frac{1}{2}} q_{40}+v^{\frac{2}{2}+\frac{1}{2}}{ }_{\left.\frac{2}{2} \right\rvert\, \frac{1}{2}} q_{40}+v^{\frac{3}{2}+\frac{1}{2}}{ }_{\left.\frac{3}{2} \right\rvert\, \frac{1}{2}} q_{40} \\
\frac{0}{2} \left\lvert\, \frac{1}{2} q_{40}\right. & ={ }_{0.5} q_{45}=1-{ }_{0.5} p_{40}=1-p_{40}^{0.5}=1-0.8^{0.5}=0.10557, \\
0.5 \mid 0.5 q_{40} & =0.5 p_{40}-p_{40}=p_{40}^{0.5}-p_{40}=0.8^{0.5}-0.8=0.094427, \\
1 \mid 0.5 q_{40} & =p_{40}\left(1-{ }_{0.5} p_{41}\right)=p_{40}\left(1-p_{41}^{0.5}\right)=0.8\left(1-0.75^{0.5}\right)=0.10718, \\
\frac{3}{2} \left\lvert\, \frac{1}{2} q_{40}\right. & ={ }_{1.5} p_{40}-{ }_{2} p_{40}=p_{40} 0.5 p_{41}-p_{40} p_{41} \\
& =p_{40}\left(p_{41}^{0.5}-p_{41}\right)=0.8\left(0.75^{0.5}-0.75\right)=0.09282
\end{aligned}
$$

hence

$$
10^{5} A_{45: 2}^{1}(2)=10^{5}\left(\frac{0.10557}{1.04^{0.5}}+\frac{0.094427}{1.04}+\frac{0.10718}{1.04^{1.5}}+\frac{0.09282}{1.04^{2}}\right)=\mathbf{3 8 1 1 9} .
$$

7. This annuity is the sum of a 10-year annuity-certain and a 10-year deferred 20 -year temporary life annuity on (30). So APV (of the Annuity) is

$$
\begin{aligned}
\ddot{a}_{\overline{10 \mid}}+\ddot{a}_{[10 \mid] 30: \overline{20}} & =\ddot{a}_{\overline{10 \mid}}+{ }_{10} E_{30} \ddot{a}_{40: \overline{20}} \\
& =\ddot{a}_{10 \mid}+{ }_{10} E_{30}\left(\ddot{a}_{40}-{ }_{20} E_{40} \ddot{a}_{60}\right) \\
& =\frac{1-v^{10}}{d}+{ }_{10} E_{30}\left(\ddot{a}_{40}-{ }_{20} E_{40} \ddot{a}_{60}\right) \\
& =\frac{1-(0.9434)^{10}}{1-0.9434}+0.54733(14.8166-0.27414 \times 11.1454)=\mathbf{1 4 . 2 3 9} .
\end{aligned}
$$

8. Remember that the Woolhouse's formula with three terms for a m-thly whole life annuity is

$$
\ddot{a}_{x}^{(m)} \simeq \ddot{a}_{x}-\frac{m-1}{2 m}-\frac{m^{2}-1}{12 m^{2}}\left(\mu_{x}+\delta\right) .
$$

By assumption we have

$$
\begin{aligned}
& \ddot{a}_{60}^{(2)}=\ddot{a}_{60}-\frac{2-1}{4}-\frac{2^{2}-1}{12 \times 2^{2}}\left(\mu_{60}+\delta\right)=\ddot{a}_{60}-0.250-0.0625\left(\mu_{60}+\delta\right)=10.25 \\
& \ddot{a}_{60}^{(4)}=\ddot{a}_{60}-\frac{4-1}{8}-\frac{4^{2}-1}{12 \times 4^{2}}\left(\mu_{60}+\delta\right)=\ddot{a}_{60}-0.375-0.0781\left(\mu_{60}+\delta\right)=10.05
\end{aligned}
$$

which leads to $\ddot{a}_{60}=10.8005$ and $\mu_{60}+\delta=4.8077$, therefore

$$
\begin{aligned}
\ddot{a}_{60}^{(12)} & =\ddot{a}_{60}-\frac{12-1}{24}-\frac{12^{2}-1}{12^{3}}\left(\mu_{60}+\delta\right) \\
& =10.8005-\frac{12-1}{24}-\frac{12^{2}-1}{12^{3}}(4.8077)=\mathbf{9 . 9 4 4 3}
\end{aligned}
$$

9.

(a) We have

$$
\mathbf{A P V}(\mathbf{F B})_{0}=1000 A_{45}+1000 \bar{A}_{45: 20 \mid}^{1}=1000 A_{45}+1000\left(A_{45}-{ }_{20} E_{45} A_{65}\right)
$$

and

$$
\mathbf{A P V}(\mathbf{F E})_{0}=0.8 G+0.1 G\left(\ddot{a}_{45}-1\right) .
$$

The $\mathbf{A P V}(\mathbf{F P})_{0}=G \ddot{a}_{45}$ hence by E.P. we get

$$
0.9 G\left(\ddot{a}_{45}-1\right)=1000 A_{45}+1000\left(A_{45}-{ }_{20} E_{45} A_{65}\right)=2000 A_{45}-1000_{20} E_{45} A_{65} .
$$

we obtain then

$$
G=\frac{2 \times 201.20-0.25634(439.80)}{0.9(14.1121-1)}=\frac{289.66167}{11.80089}=\mathbf{2 4 . 5 4 5 7 4 8} .
$$

(b) Now, we calculate the APV of benefits and expenses.

$$
1000 A_{65}+0.1 G \ddot{a}_{65}=439.80+0.1(43.652)(9.8969)=483 .
$$

The gross premium reserve at time 20 is

$$
\begin{aligned}
{ }_{20} V^{g} & =1000 A_{65}+0.1 G \ddot{a}_{65}-G \ddot{a}_{65}=1000 A_{65}-0.9 G \ddot{a}_{65} \\
& =439.80-0.9(24.545748)(9.8969)=\mathbf{2 2 1 . 1 6 5 8 7}
\end{aligned}
$$

10. Note that renewal expenses are payable even past the premium payment period, although the percent of premium expenses are 0 after the premium payment period. The gross premium reserve in terms of the gross premium is

$$
\begin{aligned}
{ }_{5} V^{g} & =1000 \bar{A}_{45}+5 \ddot{a}_{45}-0.95 G \ddot{a}_{45: 15} \\
200 & =305+5(14)-0.95(10.2) G=375.0-9.69 G \\
G & =\frac{375-200}{9.69}=\mathbf{1 8 . 0 6}
\end{aligned}
$$

11. The gross premium is determined by E.P.

$$
\left.5 \times 10^{4} A_{45: \overline{20}}+100+0.3 G+0.05 G a_{45: 9}+0.02 G \ddot{a}_{[} 10 \mid\right] 45: \overline{10}+10 a_{45: 19 \mid}=G \ddot{a}_{45: \overline{20}}
$$

which can written also as

$$
\begin{aligned}
G \ddot{a}_{45: \overline{20}} & =5 \times 10^{4} A_{45: 20 \mid}+100+0.3 G+(0.02 G+10) a_{45: 19}+0.03 G a_{45: 9 \mid} \\
& =5 \times 10^{4} A_{45: 20}+90+0.25 G+(0.02 G+10) \ddot{a}_{45: 20}+0.03 G \ddot{a}_{45: 10}
\end{aligned}
$$

Now, calculate the needed insurances and annuities.

$$
\begin{aligned}
A_{45: \overline{20}} & =1-d \ddot{a}_{45: \overline{20}}=1-d\left(\ddot{a}_{45}-{ }_{20} E_{45} \ddot{a}_{65}\right) \\
& =1-\frac{0.06}{1.06}(14.1121-0.25634 \times 9.8969)=1-\frac{0.06}{1.06}(11.5751)=0.34481 \\
\ddot{a}_{45: \overline{10}} & =\left(\ddot{a}_{45}-{ }_{10} E_{45} \ddot{a}_{55}\right)=14.1121-(0.52652)(12.2758)=7.6486 .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
G & =\frac{10^{4} A_{45: 20}+90+10 \ddot{a}_{45: \overline{20}}}{0.98 \ddot{a}_{45: 20}-0.03 \ddot{a}_{45: \overline{10}}-0.25} \\
& =\frac{10^{4}(0.34481)+10(11.5751)+90}{0.98(11.5751)-0.03(7.6486)-0.25}=\frac{3653.9}{10.864}=336.33
\end{aligned}
$$

The expense premium P^{e} is $336.33-297.89=\mathbf{3 8 . 4 4}$.
12. From recursion formula we have

$$
\begin{aligned}
\left({ }_{9} V+P\right)(1+i)^{0.5} & =v^{1-s}{ }_{0.5} q_{59} \times 0+{ }_{9.5} V_{0.5} p_{59} \\
& =\left(1-{ }_{0.5} q_{59}\right){ }_{9.5} V=\left(1-\frac{1}{2} \times \frac{1}{2}\right) 250=187.5
\end{aligned}
$$

then

$$
P=\frac{187.5}{\sqrt{1.045}}-60=\mathbf{1 2 3 . 4 1 8}
$$

13. The FPT reserve at time 2 is the time 1 level net premium reserve for a 19 -year endowment insurance on (46),

$$
{ }_{2} V_{45: 20 \mid}^{\mathrm{FPT}}={ }_{1} V_{46: 19 \mid}=1-\frac{\ddot{a}_{47: \overline{18}}}{\ddot{a}_{46: 19}}
$$

so we need $\ddot{a}_{47: \overline{18}}$ and $\ddot{a}_{46: 19 \mid}$. But $\ddot{a}_{47: 18 \mid}=\frac{1-A_{47: 18}}{d}=\frac{1-0.382}{0.04}(1.04)=16.068$ and $\ddot{a}_{46: 19}$ can be backed by recursion on annuities.

$$
\ddot{a}_{46: \overline{19} \mid}=1+v p_{46} \ddot{a}_{47: \overline{18} \mid}=1+\frac{1-0.00424}{1.04}(16.068)=16.384 .
$$

Then FPT reserve at time 2 is

$$
10^{4}{ }_{2} V_{20}^{\mathrm{FPT}}=10000\left(1-\frac{16.068}{16.384}\right)=\mathbf{1 9 2 . 8 7}
$$

14. The level net premium reserve for the benefit 1 is A_{65}

$$
{ }_{10} V_{55}=A_{65}-P_{55} \ddot{a}_{65}=\frac{A_{65}-A_{55}}{1-A_{55}}=\frac{0.440-0.305}{1-0.305}=0.19424 .
$$

By the relationship between the FPT reserve and the net premium reserve, we have

$$
{ }_{10} V_{55}^{\mathrm{FPT}}={ }_{9} V_{56}=\frac{A_{65}-A_{56}}{1-A_{56}} .
$$

So, we need A_{56}, which can be backed by insurance recursion $A_{55}=v q_{55}+v p_{55} A_{56}$. Hence

$$
A_{56}=\frac{1.05 A_{55}-0.0065}{1-0.0065}=0.315803
$$

therefore ${ }_{10} V_{55}^{\mathrm{FPT}}=\frac{0.440-0.315803}{1-0.315803}=0.18152$. The difference is

$$
10^{5}\left({ }_{10} V_{55}-{ }_{10} V_{55}^{\mathrm{FPT}}\right)=100000(0.19424-0.18152)=\mathbf{1 2 7 2} .
$$

15.

(a) The modified premium in the first year is $1000 \alpha=1000 v q_{65}=\frac{21.32}{1.06}=\mathbf{2 0 . 1 1 3 2 1}$. The modified premium in renewal years is the net premium for (66), or

$$
1000 \beta=1000 P_{66}=1000 \frac{A_{66}}{\ddot{a}_{66}}=\frac{454.56}{9.6362}=47.17212
$$

(b) The reserve at the end of 5 years is the net premium reserve at time 4 for a whole life issued on (66), which is given by

$$
{ }_{5} V^{\mathrm{FPT}}=1000{ }_{4} V_{66}=1000\left(1-\frac{\ddot{a}_{70}}{\ddot{a}_{66}}\right)=1000\left(1-\frac{8.5693}{9.6362}\right)=\mathbf{1 1 0 . 7 2}
$$

16. There is no death benefit in year 19, so the benefit $b_{t}=0$ in that period. Let us calculate the two μ_{x} 's that we need.

$$
\mu_{64.5}=0.00015(1.06)^{64.5}=0.00643161 \text { and } \mu_{64}=0.00015(1.06)^{64}=0.00624693
$$

The net premium reserve at time 20 , since the policy is paid up then, is $10000 \bar{A}_{65}=2582.10$. We shall apply the discritization

$$
{ }_{t} V \simeq \frac{{ }_{t+h} V-h\left(P-b \mu_{x+t}\right)}{1+h\left(\delta+\mu_{x+t}\right)}
$$

Since ${ }_{20} V=2582.10$

$$
\begin{aligned}
{ }_{19.5} V & =\frac{2582.10-0.5(71.25)}{1+0.5(0.05+0.00643161)}=\mathbf{2 4 7 6 . 6 0} \\
{ }_{19} V & =\frac{2476.60-0.5(71.25)}{1+0.5(0.05+0.00624693)}=\mathbf{2 3 7 4 . 2 0}
\end{aligned}
$$

17. Since there are no death or withdrawal during the first two policy years,

$$
\left({ }_{0} \mathrm{AS}+G-0.07 G-10\right) \times 1.05=0 q_{40}+{ }_{1} \mathrm{AS} p_{40}={ }_{1} \mathrm{AS}
$$

thus

$$
{ }_{1} \mathrm{AS}=(0.93 G-10) \times 1.05=(93-10) \times 1.05=87.15
$$

Since $b^{(d)}=b^{(w)}=0$, we have

$$
{ }_{2} \mathrm{AS}=\left({ }_{1} \mathrm{AS}+0.93 G-2\right) \times 1.05=(87.15+93-2) \times 1.05=\mathbf{1 8 7 . 0 6}
$$

