King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

October 4, 2020 from 9 to 11 AM, ACTU-362-372 (two pages + formula sheet)

Midterm Exam I, Actuarial Mathematical Models I

Exercise 1

The survival function $S_{0}(t)$ of the age-at death T_{0} is given by

$$
S_{0}(t)=\frac{1}{(1+t)^{2}} \text { for } \quad t \geq 0
$$

1. Find $F_{0}(t)$ the $c . d . f$ of T_{0}
2. Find $f_{0}(t)$ the p.d.f of T_{0}
3. Find $S_{x}(t)$ the survival function of the future life time T_{x} of an age x.
4. Calculate ${ }_{2} p_{10}$.
5. Calculate ${ }_{10 \mid 5} q_{20}$.

Solution:

1. The c.d.f. $F_{0}(t)$ of T_{0} is given by $F_{0}(t)=1-S_{0}(t)=1-\frac{1}{(1+t)^{2}}$ for all $t \geq 0$.
2. The p.d.f. $f_{0}(t)$ of T_{0} is given by $f_{0}(t)=F_{0}^{\prime}(t)=\left(1-\frac{1}{(1+t)^{2}}\right)^{\prime}=\frac{2}{(1+t)^{3}}$ for all $t \geq 0$.
3. The survival function $S_{x}(t)$ of future life time T_{x} is given in terms of $S_{0}(t)$ by: $\frac{2}{(1+t)^{3}}$

$$
S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=\frac{\frac{1}{(1+x+t)^{2}}}{\frac{1}{(1+x)}}=\frac{(1+x)^{2}}{(1+x+t)^{2}}
$$

4. We know that ${ }_{t} p_{x}=S_{x}(t)$, then ${ }_{2} p_{10}=S_{10}(2)=\frac{(1+10)^{2}}{(1+10+2)^{2}}=\frac{(11)^{2}}{(13)^{2}}=\mathbf{0 . 7 1 5 9 8}$.
5. We know that ${ }_{m \mid n} q_{x}={ }_{m+n} q_{x}-{ }_{m} q_{x}={ }_{m} p_{x}-{ }_{m+n} p_{x}$, then

$$
\begin{aligned}
{ }_{10 \mid 5} q_{20} & ={ }_{10} p_{20}-{ }_{15} p_{20}=S_{20}(10)-S_{20}(15) \\
& =\frac{(1+20)^{2}}{(1+20+10)^{2}}-\frac{(1+20)^{2}}{(1+20+15)^{2}}=\mathbf{0 . 1 1 8 6 2}
\end{aligned}
$$

Exercise 2

1. You are given the following mortality table:

x	20	21	22	23	24
q_{x}				0.0700	
ℓ_{x}	30,000				23,900
d_{x}	1,200				

Determine the probability that a life age 21 will die within two years.
2. $\boldsymbol{C A N C E L E D}$ You are given ${ }_{k \mid} q_{x}=0.01+\frac{k}{100}$ for $k=0,1, \ldots$, 9. Calculate ${ }_{4} p_{x+6}$
3. Find ${ }_{t} p_{x}$ when the Mortality follows Gompertz's law $\left(\mu_{x}=B c^{x}\right)$. You are given that ${ }_{5} p_{60}=0.95$ and ${ }_{10} p_{60}=0.87$. Determine ${ }_{30} p_{60}$.

Solution:

1. The required probability is ${ }_{2} q_{21}=1-\frac{\ell_{23}}{\ell_{21}}$. We need ℓ_{21} and ℓ_{23} which will be backed up as follows

$$
\ell_{21}=\ell_{20}-d_{20}=30000-1200=28800
$$

now we shall use $q_{x}=\frac{\ell_{x}-\ell_{x+1}}{\ell_{x}}$ or equivalently $\ell_{x}=\frac{\ell_{x+1}}{1-q_{x}}$, thus $\ell_{23}=\frac{\ell_{24}}{1-q_{23}}=\frac{23900}{1-0.07}=25698.92$. So we get

$$
{ }_{2} q_{21}=1-\frac{25698.92}{28800}=\mathbf{0 . 1 0 7 6 7 6 4}
$$

2. CANCELED By definition of ${ }_{t} p_{x}$ we can write

$$
{ }_{4} p_{x+6}=\frac{\ell_{x+10}}{\ell_{x+6}} \text { and }{ }_{k \mid} q_{x}=\frac{\ell_{x+k}-\ell_{x+1+k}}{\ell_{x}} \Longleftrightarrow \ell_{x+k}-\ell_{x+1+k}={ }_{k \mid} q_{x} \ell_{x}
$$

hence

$$
\begin{aligned}
\ell_{x}-\ell_{x+10} & =\sum_{k=0}^{9}\left(\ell_{x+k}-\ell_{x+1+k}\right)=\ell_{x} \sum_{k=0}^{9}{ }_{k \mid} q_{x} \\
\ell_{x}-\ell_{x+6} & =\sum_{k=0}^{5}\left(\ell_{x+k}-\ell_{x+1+k}\right)=\ell_{x} \sum_{k=0}^{5}{ }_{k \mid} q_{x}
\end{aligned}
$$

thus

$$
\ell_{x+10}=\ell_{x}\left(1-\sum_{k=0}^{9}{ }_{k \mid} q_{x}\right) \text { and } \ell_{x+6}=\ell_{x}\left(1-\sum_{k=0}^{5}{ }_{k \mid} q_{x}\right)
$$

therefore

$$
{ }_{4} p_{x+6}=\frac{\ell_{x+10}}{\ell_{x+6}}=\frac{1-\sum_{k=0}^{9} k \mid q_{x}}{1-\sum_{k=0}^{5} k \mid q_{x}}=\frac{1-\sum_{k=0}^{9}(0.01+0.01 k)}{1-\sum_{k=0}^{5}(0.01+0.01 k)}=\frac{0.55}{0.79}=\mathbf{0 . 6 9 6 2} .
$$

3. By definition of ${ }_{t} p_{x}$ we can write

$$
{ }_{t} p_{x}=e^{-\int_{x}^{x+t} \mu_{s} d s}=e^{-B \int_{x}^{x+t} c^{s} d s}=e^{-B \int_{0}^{t} c^{x+s} d s}=e^{-\frac{B c^{x}}{\ln (c)}\left(c^{t}-1\right)}
$$

Take the \log for $x=60, t=5$ and $t=10$ in the previous formula we get,

$$
\frac{B c^{60}\left(c^{5}-1\right)}{\ln (c)}=-\ln (0.95) \text { and } \frac{B c^{60}\left(c^{10}-1\right)}{\ln (c)}=-\ln (0.87)
$$

Dividing the first into the second,

$$
\begin{aligned}
c^{5}+1 & =\frac{\ln (0.87)}{\ln (0.95)}=2.715015 \\
c & =\sqrt[5]{1.715015}=1.11392 \\
c^{30}-1 & =24.4453 \\
\frac{B c^{60}\left(c^{30}-1\right)}{\ln (c)} & =\left(\frac{B c^{60}\left(c^{5}-1\right)}{\ln (c)}\right)\left(\frac{c^{30}-1}{c^{5}-1}\right) \\
& =-\ln \left(5 p_{60}\right)\left(\frac{c^{30}-1}{c^{5}-1}\right) \\
& =(-\ln 0.95)\left(\frac{c^{30}-1}{c^{5}-1}\right)=1.753641 \\
{ }_{30} p_{60} & =e^{-1.753641}=0.1731
\end{aligned}
$$

Exercise 3

1. Assume that the life table function is given by $\ell_{x}=10000 e^{-0.05 x}, x \geq 0$. find ${ }_{3 \mid 10} q_{25}$
2. Assume that the life table function at some ages is given as follows: (i) $\ell_{40}=94,000$, (ii) $\ell_{41}=93,000$, (ii) $\ell_{42}=92,000$
Assuming Constant Force of Mortality between integral ages, find ${ }_{1.3} q_{40.5}$.
3. The force of mortality at some ages of a certain mortality table are given: (i) $\mu_{60.5}=0.02$, (ii) $\mu_{61.5}=0.04$ and (iii) $\mu_{62.5}=0.06$. Under $\boldsymbol{U D D}$ assumption, calculate the probability that a person age 60.5 will die within two years.

Solution:

1. We have

$$
\begin{aligned}
{ }_{3 \mid 10} q_{25} & ={ }_{13} q_{25}-{ }_{3} q_{25}={ }_{3} p_{25}-{ }_{13} p_{25}=\frac{\ell_{28}}{\ell_{25}}-\frac{\ell_{38}}{\ell_{25}} \\
& =\frac{\ell_{28}-\ell_{38}}{\ell_{25}}=\frac{e^{-0.05 \times 28}-e^{-0.05 \times 38}}{e^{-0.05 \times 25}} \\
& =e^{-0.05 \times 3}-e^{-0.05 \times 13}=\mathbf{0 . 3 3 8 6}
\end{aligned}
$$

2. We can write under CFM assumption

$$
\begin{aligned}
1.3 p_{40.5} & =\frac{1.8 p_{40}}{0.5 p_{40}}=\frac{p_{40} \times{ }_{0.8} p_{41}}{0.5 p_{40}}=\frac{p_{40}\left(p_{41}\right)^{0.8}}{\left(p_{40}\right)^{0.5}}=\left(p_{40}\right)^{0.5}\left(p_{41}\right)^{0.8} \\
& =\left(\frac{\ell_{41}}{\ell_{40}}\right)^{0.5}\left(\frac{\ell_{42}}{\ell_{41}}\right)^{0.8}=\left(\frac{93}{94}\right)^{0.5}\left(\frac{92}{93}\right)^{0.8}=0.9861
\end{aligned}
$$

thus

$$
{ }_{1.3} q_{40.5}=1-{ }_{1.3} p_{40.5}=1-0.9861=\mathbf{0 . 0 1 3 9}
$$

3. The probability that a person age 60.5 will die within two years is given by

$$
P\left(T_{60.5} \leq 2\right)={ }_{2} q_{60.5}=1-{ }_{2} p_{60.5}
$$

First calculate ${ }_{2} p_{60.5}$. We have

$$
\begin{aligned}
{ }_{2} p_{60.5} & =\frac{{ }_{2.5} p_{60}}{{ }_{0.5} p_{60}}=\frac{{ }_{2} p_{60} \times{ }_{0.5} p_{62}}{0.5 p_{60}}=\frac{p_{60} \times p_{61} \times{ }_{0.5} p_{62}}{0.5 p_{60}} \\
& =\frac{\left(1-q_{60}\right)\left(1-q_{61}\right)\left(1-0.5 q_{62}\right)}{\left(1-0.5 q_{60}\right)}
\end{aligned}
$$

Remember that under UDD assumption we have

$$
\mu_{x+r}=\frac{q_{x}}{1-r q_{x}} \text { for all integer } x \text { and } 0<r<1
$$

Therefore $q_{x}=\frac{\mu_{x+r}}{1+r \mu_{x+r}}$ and then i) $q_{60}=\frac{0.02}{1+0.5 \times 0.02}=0.0198$, ii) $q_{61}=\frac{0.04}{1+0.5 \times 0.04}=0.0392$ and iii) $q_{62}=\frac{0.06}{1+0.5 \times 0.06}=0.0582$, consequently

$$
{ }_{2} p_{60.5}=\frac{(1-0.0198)(1-0.0392)(1-0.5 \times 0.0582)}{(1-0.5 \times 0.0198)}=0.92351
$$

Finally, the required probability ${ }_{2} q_{60.5}=1-0.92351=\mathbf{0 . 0 7 6 4 9}$.

Exercise 4

1. Ismail at age 30, wants to buy a 3-year endowment insurance, with a $40,000 S A R$ benefit payable at the end of the year of death. Determine the net single premium for this insurance assuming that Ismail is subject to a constant force of mortality, $\mu_{x}=0.08$ and a constant force of interest $\delta=0.04$.
2. A Woman, age 36, purchases a 3-year term insurance with benefits payable at the end of the year of death. The benefit is given by the formula: $b_{k}=5000 \times(1.04)^{k}$ for $t=1,2,3$ Mortality is described in the following table:

Age	35	36	37	38	39	40
ℓ_{x}	60,000	50,000	47,500	45,000	42,500	40,000

Calculate the net single premium for this insurance when $i=0.05$.
3. You are given the following excerpt from a TWO year select-and-ultimate mortality table:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	$x+2$
30	10,000	9,000	8,000	32
31	9,500	8,500	7,500	33
32	9,200	8,100	7,000	34
33	8,700	7,500	6,300	35
34	8,000	6,600	5,200	36

You are also given that a 4-year pure endowment for 250, 000 SAR issued at age 30 to a life selected at age 30 has a net single premium of $50,000 S A R$ Assume a constant rate of interest. Determine the net single premium for a 3-year pure endowment for 250,000 SAR issued at age 31 to a life selected at age 31.

Solution:

1. The net single premium is $40000 A_{30: 3}$ where

$$
\begin{aligned}
A_{30: 31} & =A_{30: 31}^{1}+{ }_{3} E_{30}=v q_{30}+v^{2} p_{30} q_{31}+v^{3}{ }_{2} p_{30} q_{32}+v^{3}{ }_{3} p_{30} \\
& =v q_{30}+v^{2} p_{30} q_{31}+v^{3}{ }_{2} p_{30}\left(q_{32}+p_{32}\right)=v q_{30}+v^{2} p_{30} q_{31}+v^{3}{ }_{2} p_{30} \\
& =e^{-0.04}\left(1-e^{-0.08}\right)+e^{-0.08}\left(e^{-0.08}\right)\left(1-e^{-0.08}\right)+e^{-0.12} e^{-0.16} \\
& =0.07387+0.65516+0.75578=1.4848
\end{aligned}
$$

The answer is therefore $40000(1.4848)=59392$.
2. The net single premium NSP is given by:

$$
\begin{aligned}
\mathrm{NSP} & =v b_{1} q_{36}+v^{2} b_{2} p_{36} q_{37}+v^{3} b_{3}{ }_{2} p_{36} q_{38} \\
& =v b_{1} \frac{\ell_{36}-\ell_{37}}{\ell_{36}}+v^{2} b_{2} \frac{\ell_{37}}{\ell_{36}} \frac{\ell_{37}-\ell_{38}}{\ell_{37}}+v^{3} b_{3} \frac{\ell_{38}}{\ell_{36}} \frac{\ell_{38}-\ell_{39}}{\ell_{38}} \\
& =\frac{1}{\ell_{36}}\left(v b_{1}\left(\ell_{36}-\ell_{37}\right)+v^{2} b_{2}\left(\ell_{37}-\ell_{38}\right)+v^{3} b_{3}\left(\ell_{38}-\ell_{39}\right)\right) \\
& =\frac{5000}{\ell_{36}}\left(\frac{1.04}{1.05}\left(\ell_{36}-\ell_{37}\right)+\left(\frac{1.04}{1.05}\right)^{2}\left(\ell_{37}-\ell_{38}\right)+\left(\frac{1.04}{1.05}\right)^{3}\left(\ell_{38}-\ell_{39}\right)\right) \\
& =\frac{5000}{50000}\left(\frac{1.04}{1.05}(50000-47500)+\left(\frac{1.04}{1.05}\right)^{2}(47500-45000)+\left(\frac{1.04}{1.05}\right)^{3}(45000-42500)\right) \\
& =\mathbf{7 3 5 . 8}
\end{aligned}
$$

3. The NSP of this policy is given by $250000 A_{[31]: 3]}=250000{ }_{3} E_{[31]}$ where

$$
A_{[31]: 3]}={ }_{3} E_{[31]}=v^{3}{ }_{3} p_{[31]}=v^{3}{ }_{3} p_{[31]}=v^{3} \frac{\ell[31]+3}{\ell_{[31]}} .
$$

Now, let us back out the discount factor. We have

$$
\begin{aligned}
50000= & 250000 v^{4} \frac{\ell_{[30]+4}}{\ell_{[30]}} \Longleftrightarrow 1=5 v^{4} \frac{5200}{10000}=0.52 \times 5 v^{4} \\
& 0.52 \times 5
\end{aligned}
$$

which gives $v=\left(\frac{1}{2.6}\right)^{0.25}=0.78751$.
Therefore the Net Single Premium for the 3-year pure endowment is .

$$
250000{ }_{3} E_{[31]}=250000(0.78751)^{3}\left(\frac{7000}{9500}\right)=89967 .
$$

Exercise 5

1. You are given: (i) The benefit of 120,000 on a ten-year endowment insurance is payable at the moment of death, or at the end of 10 years if (x) survives 10 years. (ii) $\mu_{x+t}=0.02$ for $t>0$ (iii) $\delta=0.04$. Calculate the expected present value.
2. The expected present value of an n-year term insurance paying 10,000 at the moment of death to (x) is 36125. You are given: (i) $\mu_{x+t}=0.008, t>0$ (ii) $\delta=0.032$. Determine n
3. A 5-year deferred whole life insurance of 200,000 on (x) is payable at the moment of death. You are given that

$$
\mu_{x+t}=0.02 \text { for all } t \geq 0 \text { and } \delta_{t}=0.06 \text { for all } t \geq 0
$$

Calculate the expected present value (net single premium) of this insurance.

Solution:

1. The APV is given by $120000 \bar{A}_{x: 10 \mid}$ and we know that

$$
\bar{A}_{x: \bar{n}}=\bar{A}_{x: n}^{1}+{ }_{n} E_{x}=\frac{\mu}{\mu+\delta}\left(1-e^{-n(\mu+\delta)}\right)+e^{-n(\mu+\delta)}
$$

for $n=10, \mu=0.02$ and $\delta=0.04$

$$
\bar{A}_{x: \overline{10 \mid}}=\frac{0.02}{0.02+0.04}\left(1-e^{-10(0.06)}\right)+e^{-10(0.06)}=\mathbf{0 . 6 9 9 2 1} .
$$

Finally APV is given by $120000 \bar{A}_{x: 10 \mid}=120000 \times 0.69921=83905$.
2. We know that $\bar{A}_{x: \bar{n} \mid}^{1}=\frac{\mu}{\mu+\delta}\left(1-e^{-n(\mu+\delta)}\right)=\frac{0.008}{0.04}\left(1-e^{-0.04 n}\right)=0.8 e^{-0.04 n}=0.36125$, which gives $n=19.876 \simeq 20$.
3. The APV of the insurance is given by $200000_{5 \mid} \bar{A}_{x}$ where

$$
{ }_{5 \mid} \bar{A}_{x}=\int_{5}^{\infty} e^{-\delta t}{ }_{t} p_{x} \mu_{x+t} d t=\int_{5}^{\infty} e^{-\delta t} e^{-\mu t} \mu d t=\frac{\mu}{\mu+\delta} e^{-5(\mu+\delta)}=\frac{0.02}{0.08} e^{-5 \times 0.08}=0.16758
$$

so the APV is $200000 \times 0.16758=\mathbf{3 3 5 1 6}$.

