King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

Final Exam Spring 2021 ACTU-362-372 (20\%) (two pages)

May 5, 2021 (three hours 9:00-12:00 AM)

Exercise 1

1. You are given $\mu_{x}=\frac{2 x}{10000-x^{2}}$ for $0 \leq x<100$. Determine the probability that an individual aged 50 dies within ONE YEAR. (Hint $\int \frac{-2 t}{a^{2}-t^{2}} \mathrm{~d} t=\ln \left(a^{2}-t^{2}\right)$ for $\left.0 \leq t<a\right)$.
2. The force of mortality is

$$
\mu_{x}=\frac{1}{4(100-x)}, \quad 0 \leq x \leq 100
$$

Calculate ${ }_{4 \mid 5} q_{30}$. (Hint: ${ }_{t} p_{x}=e^{-\int_{0}^{t} \mu_{x+u} \mathrm{~d} u}=e^{-\int_{x}^{x+t} \mu_{u} \mathrm{~d} u}$).

Solution:

1. The required probability is q_{50}. We know

$$
\begin{aligned}
q_{x} & =1-\exp \left(-\int_{x}^{x+1} \mu_{t} \mathrm{~d} t\right)=1-\exp \left(-\int_{x}^{x+1} \frac{2 t}{100^{2}-t^{2}} \mathrm{~d} t\right) \\
& =1-\frac{100^{2}-(x+1)^{2}}{100^{2}-x^{2}}=\frac{(x+1)^{2}-x^{2}}{10,000-x^{2}}=\frac{2 x+1}{100^{2}-x^{2}}
\end{aligned}
$$

hence

$$
q_{50}=\frac{101}{100^{2}-50^{2}}=\frac{101}{7500}=\mathbf{0 . 0 1 3 4 6} .
$$

2. This is beta with $\alpha=\frac{1}{4}, \omega=100$, we have

$$
{ }_{4 \mid 5} q_{30}={ }_{4} p_{30}-{ }_{9} p_{30}
$$

but

$$
{ }_{4} p_{30}=\left(\frac{100-30-4}{100-30}\right)^{\frac{1}{4}}=0.98540 \text { and }{ }_{9} p_{30}=\left(\frac{100-30-9}{100-30}\right)^{\frac{1}{4}}=0.96618 .
$$

So

$$
{ }_{4 \mid 5} q_{30}=0.98540-0.96618=\mathbf{0 . 0 1 9 2 2} .
$$

Exercise 2

1. 20-year pure endowment insurance of 5000 on (x)
2. Whole life annuity immediate with annual payments of 5000 on (x).
3. Whole life annuity due with annual payments of 5000 on (x).
4. 20-year temporary life annuity immediate with annual payments of 5000 on (x).

Write the formulas of the actuarial present value of each option then rank the APV of each option from the largest to the smallest. (Hint: use the number 1., 2., 3., 4. to order the APV)

Solution: APV are given as follows

1. $5000{ }_{20} E_{x}=5000 v^{20}{ }_{20} p_{x}$
2. $5000 a_{x}=5000 \sum_{k=1}^{\infty} v^{k}{ }_{k} p_{x}$
3. $5000 \ddot{a}_{x}=5000 \sum_{k=0}^{\infty} v^{k}{ }_{k} p_{x}$
4. $5000 a_{x: 20 \mid}=5000 \sum_{k=1}^{20} v^{k}{ }_{k} p_{x}$

The annuity-due provides one more payment than the whole life annuity immediate, which provides more payments than a 20 -year annuity. The pure endowment provides the least payments, only 2000 at duration 20. The order is $3 .>2 .>4 .>1$.

Exercise 3 For a special fully discrete 3-year term insurance on $(x) i=0.03$ level net premiums are paid at the beginning of each year. The death benefit in year k is b_{k+1}, as listed below.

k	0	1	2
b_{k+1}	60000	40000	20000
q_{x+k}	0.02	0.06	0.10

1. Calculate the net premium
2. Calculate the initial net premium reserve for year 2. (initial reserve includes premium)

Solution:

1. The APV of future benefits is

$$
A=\frac{60000(0.02)}{1.03}+\frac{40000(0.98)(0.06)}{(1.03)^{2}}+\frac{20000(0.98)(0.94)(0.10)}{(1.03)^{3}}=5068.0911
$$

and APV of future annuities of 1 is

$$
\ddot{a}_{x: 3}=1+\frac{0.98}{1.03}+\frac{(0.98)(0.94)}{(1.03)^{2}}=2.8197
$$

thus the net premium is $P=\frac{5068.0911}{2.8197}=\mathbf{1 7 9 7 . 3 8 6 6}$.
2. We will calculate the net premium reserve at time 1 sung recursion

$$
\begin{gathered}
\left({ }_{0} V+P\right)(1+i)=q_{x} b_{1}+{ }_{1} V p_{x} \\
{ }_{1} V=\frac{\left({ }_{0} V+P\right)(1+i)-q_{x} b_{1}}{p_{x}}=\frac{(1797.3866)(1.03)-0.02 \times 60000}{1-0.02}=664.6002
\end{gathered}
$$

So the initial net premium reserve for year 2 is

$$
{ }_{1} V+P=664.6002+1797.3866=\mathbf{2 4 6 1 . 9 8 6 8}
$$

Exercise 4 For a fully continuous whole life insurance of 50000 on (40), you are given

$$
\text { (i) } \quad \mu_{x+t}= \begin{cases}0.004 & t<30 \\ 0.004 e^{0.25(t-30)} & t \geq 30\end{cases}
$$

(ii) $\delta=0.03$ (iii) The net premium is P_{1} for the first 30 years and P_{2} after 30 years. (iv) The net premium reserve at time $t=30$ is 16250 .

1. Find P_{1} using retrospective formula for the reserve.
2. Calculate the net premium reserve at time $t=20$.

Solution:

1. Let us calculate P_{1} using the net premium reserve at $t=30$ We have

$$
{ }_{30} \bar{V}=\frac{P_{1} \bar{a}_{40: 30 \mid}-50000 \bar{A}_{40: 30}^{1}}{{ }_{30} E_{40}}
$$

but ${ }_{30} E_{40}=e^{-0.034(30)}=0.36055$,

$$
\bar{A}_{40: \overline{30}}^{1}=\frac{0.004}{0.034}\left(1-e^{-0.034(30)}\right)=0.075224 \text { and } \bar{a}_{40: 30 \mid}=\frac{1-e^{-0.034(30)}}{0.034}=18.80603
$$

therefroe

$$
16250=\frac{18.80603 P_{1}-50000 \times 0.075224}{0.36055}
$$

Solving for P_{1} we get $P_{1}=511.54537$
2. Now let us calculate the net premium reserve at $t=20$ with the retrospective formula also.

$$
\bar{A}_{40: 20 \mid}^{1}=\frac{0.004}{0.034}\left(1-e^{-0.034(20)}\right)=0.058045 \text { and } \bar{a}_{40: 20 \mid}=\frac{1-e^{-0.034(20)}}{0.034}=14.51126
$$

hence

$$
{ }_{20} \bar{V}=\frac{P_{1} \bar{a}_{40: \overline{20}}-50000 \bar{A}_{40: \overline{20}}^{1}}{{ }_{20} E_{40}}=\frac{511.54537 \times 14.51126-50000 \times 0.058045}{e^{-0.034(20)}}=\mathbf{8 9 2 3 . 7 3 9 1} .
$$

Exercise 5

For a special 20-year term life insurance of 80000 on (40), you are given: (i) The death benefit is payable at the moment of death. (ii) During the $5^{\text {th }}$ year the gross premium is 1200 paid continuously at a constant rate (iii) The force of mortality follows Gompertz's law $\mu_{x}=B c^{x}$ with $B=0.0004$ and $c=1.12$. (iv) The force of interest is 4%. (v) Expenses are: -5% of premium payable continuously 200 payable at the moment of death (vi) At the end of the $5^{\text {th }}$ year the expected value of the present value of future losses random variable is 8000 .

1. Use Euler's method

$$
{ }_{t+h} V^{g} \simeq{ }_{t} V^{g}+h\left(G_{t}-\left(e_{t}+c_{t} G_{t}\right)+\left(\delta_{t}+\mu_{x+t}\right){ }_{t} V^{g}-\left(b_{t}+E_{t}\right) \mu_{x+t}\right)
$$

with steps of $h=0.25$ to calculate the expected value of the present value of future losses random variable at the end of 4.5 years.
2. For a fully discrete whole life insurance of 35000 on (x): (i) Death is the only decrement. (ii) The annual net premium is 2800 . (iii) The annual contract premium is 3000 . (iv) Expenses in year 1, payable at the start of the year, are 40% of contract premiums. (v) $i=0.05$ (vi) ${ }_{1} V=1400$. Calculate the asset share at the end of the first year assuming ${ }_{0} A S=0 . \quad$ (Hint: use recursion for net premium ${ }_{1} V$ and annual net premium to find the unknown death rate assuming ${ }_{0} V=0$).

Solution:

1. The term "expected value of present value of future losses" is used instead of "reserve". The Euler's method leads to

$$
{ }_{t} V^{g} \simeq \frac{t^{t+h} V^{g}-h\left(G_{t}-\left(e_{t}+c_{t} G_{t}\right)-\left(b_{t}+E_{t}\right) \mu_{x+t}\right)}{1+h\left(\delta_{t}+\mu_{x+t}\right)}
$$

In our situaton we need to compute ${ }_{4.75} V^{g}$ and ${ }_{4.5} V^{g}$ hence have first to compute $\mu_{44.75}$ and $\mu_{44.5}$

$$
\mu_{44.75}=0.0004(1.12)^{44.75}=0.06376 \text { and } \mu_{44.50}=0.0004(1.12)^{44.50}=0.06198
$$

therefore

$$
\begin{aligned}
{ }_{4.75} V & =\frac{{ }_{5} V^{g}-h\left((1-0.05) G-(b+E) \mu_{40+4.75}\right)}{1+h\left(0.04+\mu_{40+4.75}\right)} \\
& =\frac{8000-0.25(0.95 \times 1200-80200 \times(0.06376))}{1+0.25(0.04+0.06376)}=\mathbf{8 7 6 5 . 9 9 8} \\
{ }_{4.50} V & =\frac{8765.998-0.25(0.95 \times 1200-80200 \times(0.06198)}{1+0.25(0.04+0.06198)}=\mathbf{9 4 8 1 . 9 5 4 6}
\end{aligned}
$$

2. We have

$$
\left({ }_{0} A S+G-c_{h} G-e_{h}\right)(1+i)=35000 q_{x}+{ }_{1} A S p_{x}
$$

hence

$$
\begin{aligned}
{ }_{1} A S & =\frac{\left({ }_{0} A S+G-c_{h} G-e_{h}\right)(1+i)-35000 q_{x}}{p_{x}} \\
& =\frac{(0+3000-0.4 \times 3000)(1.05)-35000 q_{x}}{1-q_{x}}
\end{aligned}
$$

Thus we need back out q_{x} : the first-year death rate. Set ${ }_{1} V=1400$, by the recursive relation for net premium reserve,

$$
\begin{aligned}
& \left({ }_{0} V+P\right)(1+i)=35000 q_{x}+{ }_{1} V p_{x}={ }_{1} V+\left(35000-{ }_{1} V\right) q_{x} \\
& q_{x}=\frac{\left({ }_{0} V+P\right)(1+i)-{ }_{1} V}{35000-{ }_{1} V}=\frac{2800 \times 1.05-1400}{35000-1400}=0.04583
\end{aligned}
$$

Then,

$$
{ }_{1} A S=\frac{(0.6 \times 3000)(1.05)-35000 \times 0.04583}{1-0.04583}=\frac{(100-40)(1.1)-1000 q_{x}}{1-q_{x}}=\mathbf{2 9 9 . 6 8 4 5 4}
$$

