King Saud University

College of Engineering

IE - 341: "Human Factors Engineering"

$$
\text { Fall - } \left.2016 \text { (} 1^{\text {st }} \text { Sem. 1437-8H }\right)
$$

Manual Materials Handling
(Chapter 8)
part 1 - Basics Concepts
Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

Part 1:

- What is MMH?
- MMH Activities
- MMH Effect on Health
- NIOSH Lifting Equation
- Lifting Index

Part 2:

- Case Studies
o Case 1: Effect of Frequency Factor on RWL
o Case 2: Effect of Horizontal Distance on RWL
o Case 3: Effect of Vertical Distance on RWL

What is Manual Materials Handling?

- Ma nual Materials Ha nd ling (MMH)
o Importantapplication of ergonomic principles
o Particula rly addresses back injury prevention
o Almost every worker performs MMH ta sks
- Either one-time (infrequent) duty, or
- Aspart of regular work
- MMH involves five types of activities:

1. Lifting/Lowering
2. Pushing/Pulling
3. Twisting
4. Camying
5. Holding

MMH Activities

- Lifting/Lowering
o Lfting: to raise from a lower to a higher level
o Range of a lift: from the ground to ashigh as you can reach with your hands
o Lowering is the opposite activity of lifting
- Pushing/Pulling
o Pushing: to press against an object with force in order to move the object
o The opposite is to pull
- Twisting
o (MMH Defn) act of moving upper body to one side or the other, while the lower body remains in a relatively fixed position
o Twisting can take place while the entire body is in a state of motion

MMH Activities (cont.)

- Camying
o Having an object in one's grasp orattached while in the act of moving
o Weight of object becomes a part of the total weight of the person doing the work
- Holding
o Having an object in one's grasp while in a static body position

MMH: Effect on Health

- MMH: most common cause of occupational fatigue and low back pain
- About $3 / 4$ workers whose job includes MMH suffer pain due to back injury at some time
- Such back injuries account for ≈ 1 / 3 of all lost work + 40% of all compensation costs
- More important than fina ncial cost: human suffering
- \Rightarrow prevention of back injuries:
crucial, challenging problem foroccupational health and safety

MMH: Effect on Health (cont.)
 Work factors causing back injury during MMH

- Most common causes of back injuries
o Tasks involving MMH > worker's physical capacity
o Poorworkplace layout
- 1. Weight of the load lifted
o For most workers, lifting loads over 20 kilogra $m s \Rightarrow$ increased number and severity of back injuries
- 2. Range of the lift
o Preferred range for lifting is: between knee and wa ist height
o Lifting above/below this range is more hazardous
- 3. Location of load in relation to the body
o Load lifted farfrom the body \Rightarrow more stress on the back than the same load lifted close to the body

MMH: Effect on Health (cont.)
 Cont Work factors causing back injury during MMH

- 4. Size and shape of load
o Bulky object is harder to lift than a compact one of the same weight because it (or its center of gravity) cannot be brought close to the body
o Lifting a bulky object also forces a worker into an awkward and potentially unbalanced position
- 5. Number and frequency of lifts performed
o How often the worker performs MMH tasks, a nd for how long, are extremely important factors
o Frequently repeated, long-lasting tasks: most tiring \Rightarrow the most likely to cause back injury
o Highly repetitive MMH tasks also make the worker bored and less a lert \Rightarrow safety hazard

MMH: Effect on Health (cont.)
 Cont Work factors causing back injury during MMH

- 6. Excessive bending and twisting
o Poor layout of the workplace \Rightarrow risk for injury \uparrow
o e.g. shelving that is too deep, too high or too low \Rightarrow unnecessary bending or stretching
o e.g. lack of space to move freely \Rightarrow increases the need for twisting and bending
o e.g. unsuitable dimensions of benches, tables, a nd other fumiture \Rightarrow force worker to perform MMH tasks in a wkward positions
\Rightarrow add stress to the musculoskeletal system
o e.g. work areas overcrowded with people or equipment \Rightarrow stressful body movements

Establishing if a Lift is too Heavy

- NIOSH: National Institute for Occupational Safety and Health (United States)
- Following recommendations are based on "Revised NIOSH equation for the design and evaluation of manual lifting tasks"
- NIOSH lifting equation takes into account weight, other va riables in lifting tasks that contribute to the risk of injury

Establishing if a Lift is too Heavy (cont)

- e.g. situation requires frequent lifts or lifting loadsfar away from the body
$0 \Rightarrow$ there is an increased risk of injury
o Underthese conditions, reduce weight limit:
- from a baseline weight or "load constant" (LC)
- to a recommended weight limit (RWL)
- A "load constant" (LC)
o 23 kg (about 51 lb .)
o established by NIOSH: load that, under ideal conditions (e.g. shifts $\leq 8 \mathrm{hr}$.), is safe for
- 75\% of females
- 99\% of males
- i.e. 90% of adult employee population*
- The recommended weight limit (RWL)
o Calculated using the NIOSH lifting equation
o Discussed in detail in upcoming section

Calculating the RWL: Overview

STEP 1: mea sure/ a ssess va riables related to the lifting task

- Six variables considered in determining RWL:

1. horizontal distance (\mathbf{H}) the load is lifted, i.e. = distance of hands from midpoint between ankles
2. starting height of the hands from the ground, (vertic al location, \mathbf{V})
3. vertical distance of lifting (D)
4. frequenc y of lifting or time between lifts (F)
5. angle of the load in relation to the body (A)
(e.g. straight in front of you $=0$, or off to side)
6. quality of grasp or handhold based on the type of handles available (hand-to-load coupling, C).

- Each of these variables: assigned a numerical value (multiplier factor) from look-up charts

Calculating the RWL: Overview (cont.)

STEP 2: Calculate RWL using NIOSH equation
(includes six multiplier factors): RWL $=$ LC * HM * VM ${ }^{*}$ DM * FM * AM * CM

- where LC is the load constant; other factors are:
- HM, the "Horizontal Multiplier" factor
- VM, the "Vertical Multiplier" factor
- DM, the "Distance Multiplier" factor
- FM, the "Frequency Multiplier" factor
- AM, the "Asymmetric Multiplier" factor
- CM, the "Coupling Multiplier" factor

Calculating the RWL: Overview (cont.)

(1) Pick-up

Calculating the RWL: Overview (cont.)

sTEP 3: a nalyze RWL

- If all multiplier factors are in best range (i.e. 1) \Rightarrow weight limit for lifting or lowering:

$23 \mathbf{k g}$ (51 pounds)

- If multipliers are not in best ranges (i.e. <1)
\Rightarrow weight limit must be reduced accordingly

Determining the Multiplier Value

1. Figure out the "horizo ntal multiplier" (HM)

- Measure the distance the object is from the body: measure (in cm) the distance from in-between the person's ankles to their hands when holding the object
- Write down this number
- Look up the number on "horizontal distance" chart, and find matching "multiplier factor" (HM)
- Use this factor in lifting equation
- Repeat this process
 for the other 5 factors:

Determining the Multiplier Value (cont)
 2. Vertical Multiplier(VM)

- This's vertic al distance of the hands from the ground at the start of the lift
- Measure this distance (cm)
- Note, best (i.e. $V M=1$) to be 30 in (i.e. $\sim 75 \mathrm{~cm}$), why?*
- Determine corresponding VM value on the chart

3. Distance Multiplier (DM)

- This's distance (cm) load travels up/down from the starting position
- Measure this distance
- Determine corresponding DM value on the chart

Determining the Multiplier Value (cont)
 4. Frequency Multiplier (FM)

o This's how often lift is repeated in a time period
o Determine,

- if the lift is done while
o standing (i.e. $V \geq 30$ in.) or
o stooping (i.e. $V<30$ in.)
- if the lift is done for more or less than one hour (in total time for the shift)
- how much time there is between lifts (or \# of lifts/minute)

5. Asymmetric Multiplier (AM)

o This measures if body must twist or tum during lift
o Measurement is done in degrees (360° being one complete circle)

Determining the Multiplier Value (cont)

6. Coupling Multiplier (CM)
o This finds "coupling" i.e. type of grasp person has on the container
o It rates the type of handles as

- good
- fair
- poor
o You also need to know if the lift is done in a standing or stooping position

Determining the Multiplier Value (cont)

- Once you have all these values \Rightarrow use Revised lifting equation to determine the RWL
- Compare RWL to actual weight of the object
- If the RWL <lower than actual object weight:
$o \Rightarrow$ determine which factor(s) contribute to the highest risk
o factors that are contributing the highest risk have the lowest multiplier values
o modify the lift accordingly

Applicability of NIOSH Lifting Equation
 - It does not a pply when lifting/lowering,

o with one hand
o forover 8 hours
o while seated or kneeling
o in a restricted work space
o unstable objects (e.g. buckets, liquidsconta iners)
o while pushing or pulling
o with wheelba rows or shovels
o with high speed motion (faster than about 30 inches/sec ond $=0.76$ meters/ sec ond)
o extremely hot or cold objects or in extreme temperatures
o with poor foot/floor coupling (high risk of a slip orfall)

Applicability of NIOSH Lifting Equation

- It does apply (mostly) with
o two-handed lifting,
o comfortable lifting postures, and
o comfortable environments and non-slip floorings
- Calculation of RWL using the formula:
o Indicates which of the six components of the task contribute most to the risk
o The lower the factor \Rightarrow it contributes more to risk
- Why is equation called "revised"?
o NIOSH published their first lifting equation in 1981
o In 1993: new "revised" equation was published
o It took into account new research findings and other variables not used in the first equation
o "revised" equation can be used in a wider range of lifting situations than the first equation

Multiplier Values

1. Horizontal Multiplier (HM)

o Find horizontal distance (H , in cm) from midpoint between ankles to point projected on floor directly below the mid-point of hand grasps (i.e. the load-center) while holding object, ordistance to large middle-knuckle of hand
o Determine HM (discrete values) from chart
o Q: What to do for intermediate values?

$H=$ Horizontal Distance (cm)	HM Factor
25 or less	1.00
30	0.83
40	0.63
50	0.50
60	0.42
63	0.40
>63	0

Multiplier Values (Cont.)

2. Vertical Multiplier (VM)
o Find the vertical distance (V , in cm) of the hands from the ground at the start of the lift
o Determine VM (discrete values) from chart

$V=$ Starting Height (cm)	VM Factor
0	0.78
30	0.87
50	0.93
70	0.99
80	0.99
100	0.93
150	0.78
175	0.70
>175	0

Multiplier Values (Cont.)

3. Distance Multiplier (DM)

o Find the vertical distance (D, in cm) that the load travels
o Determine DM (disc rete values) from chart below

D = Lifting Distance (cm)	DM Factor
25 or less	1.00
40	0.93
55	0.90
100	0.87
145	0.85
175	0.85
>175	0

Multiplier Values (Cont.)

4. Asymmetric Multiplier (AM)
o Find the twisting angle (A) in degrees (ㅇ) of the body from the mid line (AKA the sagittal line) while lifting
o Determine AM (disc rete values) from chart

A $=$ Angle $\left(^{\circ}\right)$	AM Factor
0	1.00
30	0.90
45	0.86
60	0.81
90	0.71
105	0.66
120	0.62
135	0.57
>135	0

Multiplier Values (Cont.)

5. Frequency Multiplier (FM)

o Find the frequency of lifts (F) and the duration of lifting (in minutes or seconds) over a work shift
o Determine FM (disc rete values) from chart below

F = Time Between Lifts	FM Factor					
	Lifting While Standing ($\mathrm{V} \geq 75 \mathrm{~cm}$)			Lifting While Stooping ($\mathrm{V}<75 \mathrm{~cm}$)		
	$\leq 1 \mathrm{hr}$.	$>1 \& \leq 2 \mathrm{hr}$.	$>2 \& \leq 8 \mathrm{hr}$.	$\leq 1 \mathrm{hr}$.	$>1 \& \leq 2 \mathrm{hr}$.	$>2 \& \leq 8 \mathrm{hr}$.
$\geq 5 \mathrm{~min}$	1.00	0.95	0.85	1.00	0.95	0.85
2 min	0.97	0.92	0.81	0.97	0.92	0.81
1 min	0.94	0.88	0.75	0.94	0.88	0.75
30 sec	0.91	0.84	0.65	0.91	0.84	0.65
15 sec	0.84	0.72	0.45	0.84	0.72	0.45
10 sec	0.75	0.50	0.27	0.75	0.50	0.27
6 sec	0.45	0.26	0.13	0.45	0.26	0
5 sec	0.37	0.21	0	0.37	0	$0 \quad \cdot 27$

Multiplier Values (Cont.)

6. Coupling Multiplier (CM)
o Find the quality of grasp (or coupling, C) classified as:

- Good: fingers wrap completely a round object or handles
- Fair only a few fingers grasp fimly a round object
- Poor: only few fingers or fingertips a re partially under or a round object
o Also depends on body position (either standing or stooping)
o Determine CM (discrete values) from chart below

C = Grasp	CM Factor:	
	Standing	Stooping
Good (handles)	1.00	1.00
Fair	1.00	0.95
Poor	0.90	0.90

Multiplier Values: Alternative Equations

- Altemative formulae for multipliers:

$$
\begin{array}{ll}
\text { ० } H M=[25 / H] & \{\text { note, } 25 \leq \mathrm{H}[\mathrm{~cm}] \leq 63 \mathrm{~cm}\} \\
\text { ० } V M=[1-(0.003|V-75|)] & \{\text { note, } 0 \leq \mathrm{V}[\mathrm{~cm}] \leq 175 \mathrm{~cm}\} \\
\text { o } D M=[0.82+(4.5 / D)] & \{\text { note, } 25 \leq \mathrm{D}[\mathrm{~cm}] \leq 175 \mathrm{~cm}\} \\
\text { ० } A M=[1-(0.0032 A)] & \left\{\text { note, } 0^{\circ} \leq \mathrm{A} \leq 135^{\circ}\right\}
\end{array}
$$

- Compare between values obtained from look-up charts and above formulae (e.g. for Case 1)

Revised NIOSH Lifting Equation

- Revised NIOSH Lifting Equation:

RWL $=23 \mathrm{Kg}^{*} \mathrm{HM}^{*} \mathrm{VM}^{*} \mathrm{DM} * \mathrm{AM} * \mathrm{FM}^{*} \mathrm{CM}$

- Summary of steps:
o Carefully read and inspect the problem
o Determine the six variables: H, V, D, F, A, C
o Find out the values for the different multipliers for the MMH in question
o solve for the RML
o If RWL \geq weight of the object handled \Rightarrow
- task is safe
o If the RWL < weight of the object handled \Rightarrow
- task is dangerous
- task must be redesigned

Lifting Index

- Lifting Index (L):
o Relative estimate to physic al stress associated with certa in MMH task
o Determined by relation between RWLand lifted load (L) in kg or lb:

$\mathrm{LI}=\mathrm{L} / \mathrm{RWL}$

o As $\mathrm{LI} \uparrow \Rightarrow$ smallerfraction of workers capable of safely susta ining activity \Rightarrow two or more job designs could be compared (see next slide)
o Also, suspected hazardous jobscould be rank-ordered according to the U
o $U>1.0$ pose an increased risk for lifting-related low back pain
$0 \Rightarrow$ goal should be to design all lifting jobs to achieve a $ப$ of 1.0 or less
o Experts: unique workforce may be able to work above a lifting index of 1.0: $1<\mathrm{LI} \leq 3$
o Even for above: $ப>3.0$ is highly stressful lifting tasks \Rightarrow inc reased risk of a work-related injury

DEPARTMENT
JOB TITLE
ANALYST'S NAME
DATE
STEP 1. Measure and record task variables

Object Weight (lbs)		Hand Location				Vertical Distance	Asymmetric Angle (deg.)		Frequency Rate	Duration	Object
		Origin		Dest			Origin	Destination	lifts/min	Hrs	
L(AVG)	L(MAX)	H	V	H	V	D	A	A	F		C

STEP 2. Determine the multipliers and compute the RWLs

STEP 3. Compute the LIFTING INDEX
ORIGIN LIFT INDEX $\frac{\text { OBJECT WEIGHT }}{\text { RWL }}=$ \qquad $=$ \qquad

DESTINATION LIFT INDEX

$$
\frac{\text { OBJECT WEIGHT }}{\text { RWL }}=
$$

\qquad $=$ \qquad

Some MMH Videos

Manual Material Handling/ Safe Lfting: https://youtu.be/m2n8qehry Assessing Manual Handling Ta sks: https://youtu.be/L0Px8k5zc wI PLAD The Personal Lift Assist Device: https://youtu.be/LhAUQ CzITY

References

1. Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks. Thomas R. Wa lters et al. Ergonomics 36(7): 749-776,1993.
2. Applications Manual for the Revised NIOSH Lifting Equation. Thomas R. Walters, Vem Putz-Anderson, Arun Garg. US Department of Health a nd Human Services: Public Health Services. Cincinnati, OH, 1994.
3. OSHA Technical Manual. Section VII: Chapter 1: Back Disorders and Injuries. Online at:

www.osha.gov/dts/osta/otm/otm vii/otm vii 1.html

4. Applic ations Manual For the Revised NIOSH Lifting Equation. Centers for Disea se Control \& Prevention. Thomas R. Waters, Ph.D., Vem Putz-Anderson, Ph.D., Arun Garg, Ph.D. Centers for Disea se Control \& Prevention. Public ation date: 01/01/1994. Online at:
https://wonder.cdc.gov/wonder/prevguid/p0000427/p00 00427.asp\#head005001002000000
