King Saud University

College of Engineering

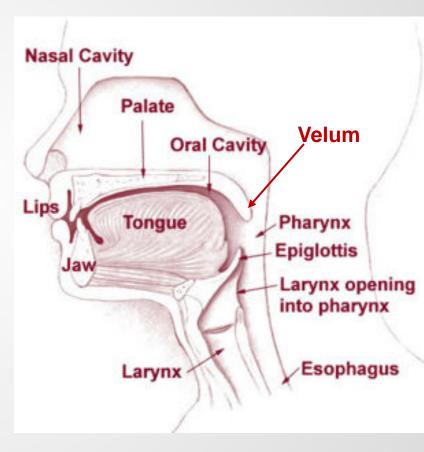
IE – 341: "Human Factors Engineering"

Fall – 2016 (1st Sem. 1437-8H)

Human Capabilities

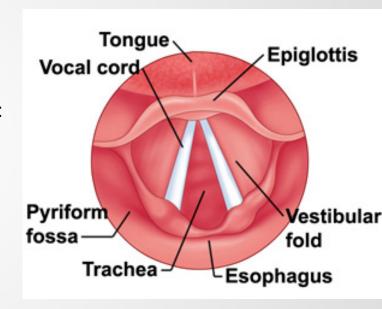
Part – C. Speech Communications (Chapter 7)
Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

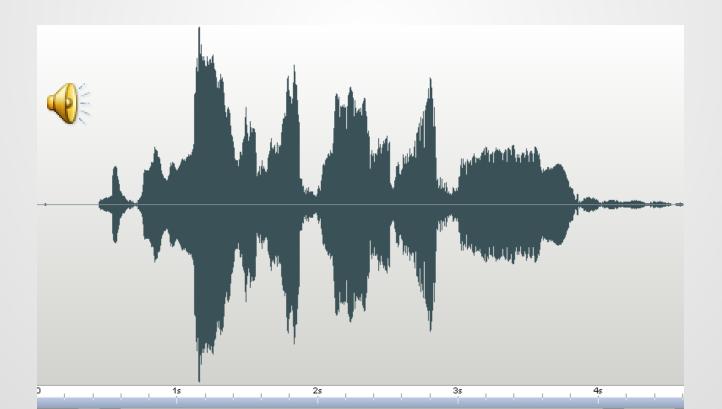

- Introduction
- The Nature of Speech
- Criteria for Evaluating Speech
- Components of Speech Communication Systems

Introduction

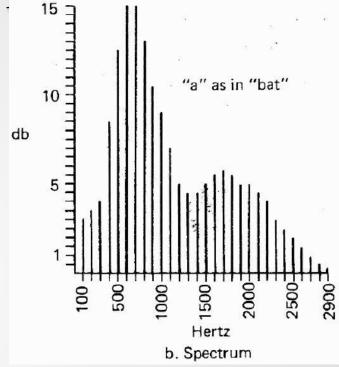
- Speech is form of "display"
 - o i.e. form of auditory information
- Source of speech
 - Mostly human (focus of this lesson)
 - Could also be synthesized
 - i.e. machine; e.g. voice mail, access confirmation)
- Receiver of speech
 - o Mostly human
 - Could also be machine: "voice recognition"
 - not advanced as synthesized sound


The Nature of Speech

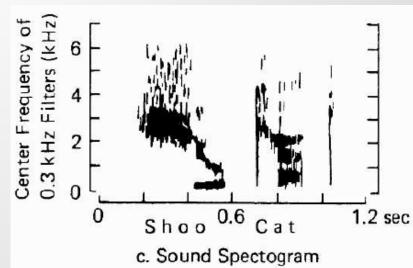
- Speech: closely associated with breathing
- Organs associated with speech:
 - o Lungs
 - o Larynx
 - contains vocal cords
 - o Pharynx
 - channel bet. larynx & mouth
 - o Mouth (AKA: oral cavity):
 - tongue, lips, teeth, velum
 - Nasal cavity
 - Watch the following video:
 "how speech works"
 https://youtu.be/C2lRhe_Fc04

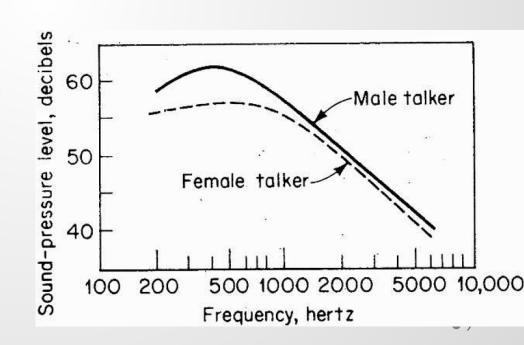

Vocal cords

- o Contains vibrating folds
- Opening between folds: glottis / epiglottis
- o Vibrates 80-400 times/sec.
- Rate of vibration of vocal cords: controls freq. of resulting speech sounds
- Watch the following video on vocal cords:
 https://youtu.be/P2pLJfWUjc8
- Speech/sound waves:
 - Produced by: vocal cords
 - Further modified by "resonators":
 - pharynx, oral cavity, nasal cavity
 - Further articulated by "manipulators":
 - Mouth: tongue, lips, velum
 - Nasal cavity: velum, pharynx muscles



- Types of Speech sounds
 - Phonemes
 - Basic unit of speech
 - Defn: "shortest segment of speech which, if changed, would change the meaning of a word"
 - Phonemes in English language:
 - o Vowel sounds: 13 (e.g. **u** sound in put, **u** sound in but)
 - o Consonant sounds: 25 (e.g. **g** sound in gyp, **g** in gale)
 - Diphthongs (i.e. sound combinations):
 e.g. oy sound in boy; ou sound in about
 - o Can you compare these to Arabic phonemes?
 - Combining phonemes:
 - o Phonemes form syllables ⇒
 syllables form words (e.g. ac·a·dem·ic) ⇒
 words form sentences
 - o Note Phonemes > letters (why?): since phonemes change when combined together (e.g. **d** in *di* different than *du*)


- Depicting Speech
 - o Sound is generated by variations in air pressure
 - o This is represented in several graphical ways
 - Method 1: waveform
 - Shows intensity variation over time (relative scale)
 - Listen to file below for verse "بسم الله الرحمن الرحيم *


- Cont. Depicting Speech
 - Method 2: spectrum
 - Shows for given phoneme / word: intensity of various frequencies in that sound sample (see right)
 - Which freq. has highest intensity in shown figure?

- Method 3: sound spectrogram
 - Frequency: vertical scale
 - Time: horizontal scale
 - Intensity: degree of darkness on plot (see right)

- Intensity of Speech (AKA "Speech Power")
 - Variation among phonemes
 - Vowels speech power » consonants
 - e.g. a in "talk" has speech power:
 680 times > th in then (i.e 28 dB difference)
 - Variation among speech types
 - conversational speech: 45-55 dBA*
 - Telephone/lecture speech: 65 dBA
 - Loud speech: 75 dBA
 - Shouting: 85 dBA
 - Variation: Male & Female
 - Male > female by 3-5 dB (in general)
 - Men in lower freq. has higher intensity than women (see right)

Criteria for Evaluating Speech

- Speech Intelligibility
 - Defⁿ: "degree/percentage to which a speech message (e.g. group of words) is correctly recognized"
 - o This's major criterion for evaluating speech
 - Assessment of speech intelligibility:
 - Either repeating back read material
 - Or answering questions regarding material
 - o Speech Intelligibility tests:
 - Nonsense syllables (e.g. un, us, mus, sub, sud, ...)
 - o these have least intelligibility
 - Phonetically balanced (PB) word lists
 - Nonsense syllables < words Intelligibility < sentences
 - Complete sentences
 - These have highest intelligibility, even when some words are not recognized (i.e. depends on context)
 - o e.g. "Did you go to the store" may sound as "Dijoo ..."
 - Watch the following videos regarding speech intelligibility:
 - Measuring speech intelligibility: https://youtu.be/pPS3Z11Wf70
 - Research study on speech intelligibility: https://youtu.be/hR7PeFEhnG0

Cont. Criteria for Evaluating Speech

Speech Quality

- o Another criterion for evaluating speech
- May be important in identifying a specific speaker e.g. on phone (i.e. absolute identification)
- Also important to choose bet. different products
 e.g. speaker phone on home phones, mobile phones
- Assessment of speech quality
 - Usually done using rating system
 - e.g. people listen to speech and asked to rate quality: excellent, fair, poor, unacceptable, etc.
 - May also be done by comparing to some standard speech quality

Components of Speech Communication Systems

Components

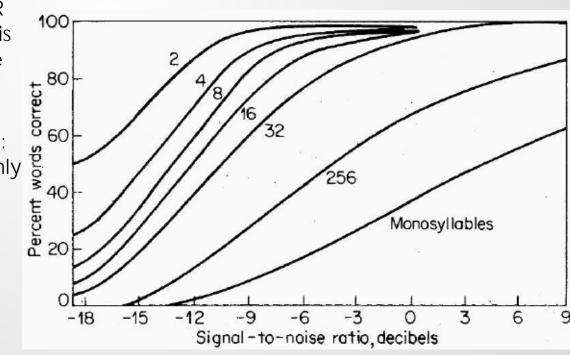
- 1. Speaker
- Message
- 3. Transmission System
- 4. Noise Environment
- 5. Hearer

Discussed here in terms of

- o Effects on intelligibility of speech communications
- Methods to improve intelligibility of system

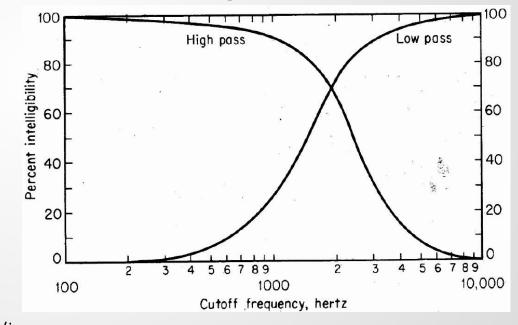
1. Speaker

- Intelligibility of speaker usu. called "enunciation"
- Research found higher intelligibility is caused by:
 - Longer syllable duration
 - Speaking with high intensity
 - Making use of speech time with spoken words and little pauses
 - Variation of speech frequencies
- o Differences bet. Intelligibilities generate from:
 - Structure of articulators (sound-producing organs)
 - Speech habits that people acquire
 - Speech training may improve speech intelligibility (but not very much)
- Watch the following video on improving enunciation: https://youtu.be/pBDS6Li2WQM


2. Message

Affected by: phonemes used, words, context

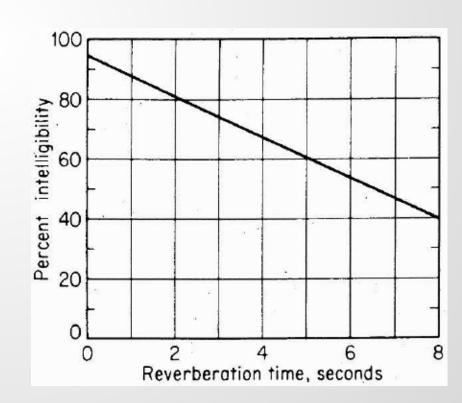
- Phoneme Confusions
 - Some speech sounds more easily confused than others
 - e.g. letters in each group (consonants) can be confused with each other: DVPBGCET, FXSH, KJA, MN
 - Avoid using single letters in presence of noise
- o Word Characteristics: for higher intelligibility use:
 - More familiar words
 - Longer words: for longer words even if part of word is dropped, rest can still be figured out
 - e.g. "word-spelling" alphabet: alpha, bravo, Charlie, delta, ... instead of A, B, C, D


2. Cont. Message

- o Context features: for higher intelligibility use:
 - **Sentences** (rather than words)
 - Meaningful sentences (rather than non-sense phrases)
 - o e.g. "This book is great" rather than "is great book this"
 - Less vocabulary (words) in the presence of noise
 - More words with noise ⇒ less intelligibility (see below)
 - Note, -ve SNR means noise is more intense than signal
 - Also note, monosyllable: words with only one syllable (e.g. hit, ant, cube, fish)

3. Transmission System

- Transmission Systems
 - Natural: air
 - Artificial: telephone, radio, etc.
- Artificial systems cause distortions, e.g.
 - Amplitude distortion
 - Frequency distortion
 - o Filtering
 - Low-pass filter: eliminates freq. above some level
 - High-pass filter: eliminates freq.
 Below level
 - Filtering:
 freq. > 4000 Hz, < 600 Hz:
 little effect on intelligibility;
 but how about > 1000 Hz, < 3000 Hz?



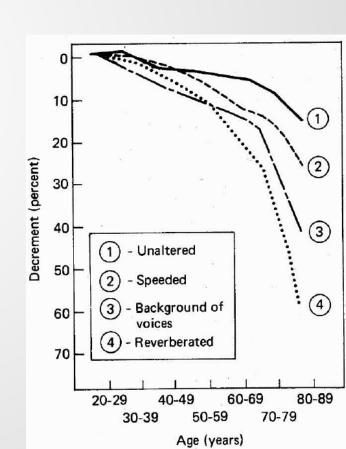
4. Noise Environment

- o causes biggest harm to speech intelligibility
- o **SNR** (signal to noise ratio):
 - Simplest way to evaluate impact of noise on intelligibility
 - Study: for noise level of 35-100 dB ⇒ SNR = 12 dB for threshold of intelligibility (what to do for loud noise?)
 - However, SNR does not take frequency into consideration (only intensity)
- o Other measures (taking freq. into consideration):
 - Articulation index (AI): a measure (0-1) of speech intelligibility while knowing the noise environment
 - Preferred-octave speech interference level (PSIL): rough measure of effect of noise on speech reception
 - Preferred noise criteria (PNC) curves: suggest acceptable noise level for different work environments (e.g. offices)

4. Cont. Noise Environment

- Reverberation:
 - Bouncing effect of noise from walls, floor, ceiling in a closed room
 - Greatly decreases speech intelligibility (e.g. classrooms)
 - In general, the longer the reverberation time, the more the speech intelligibility decreases
 - Examine the linear relation (right) for a decaying 60 dB noise

5. Hearer


- To receive speech under noise: hearer should
 - Have normal hearing
 - Be trained to receive messages
 - Be able to withstand stress of situation

Age

- Also affects speech reception (i.e. intelligibility); see right
- o 20-29 age group: base level
- Note, unaltered speech: 120 wpm
 vs. speeded speech: 300 wpm

Hearing protection

- o Prevents hearing loss
- May improve SI for noise >80 dBA
- Decreases SI for noise <80 dBA</p>

References

 Human Factors in Engineering and Design. Mark
 S. Sanders, Ernest J. McCormick. 7th Ed. McGraw: New York, 1993. ISBN: 0-07-112826-3.