## Prof. V. Lempesis

Hand in: Tuesday $30^{\text {th }}$ of March 2021, time: 23:59

1. Find the magnetic field created by the following finite length current-carrying wire at points A and B .


## Solution:

Let us first calculate the magnetic field at point $B$. If we consider an element of the wire


To solve this problem we need to apply Biot-Savart Law. We consider the elementary part $d \mathbf{l}$ of the wire at a position $x$ having length $d x$. Thus $d \mathbf{l}=d x \hat{\mathbf{x}}$. This part is flown by a current $I$ so at the point B it creates a magnetic field $d \mathbf{B}$ given by:

$$
d \mathbf{B}=\frac{\mu_{0} I}{4 \pi} \cdot \frac{d \mathbf{l} \times \mathbf{r}}{r^{3}}
$$

where $\mathbf{r}$ is a vector having its tail (beginning) at the tail of $d \mathbf{l}$ and its tip (end) at the point B. Thus $\mathbf{r}=(0, h, 0)-(x, 0,0)$ or $\mathbf{r}=(-x, h, 0)$. Then

$$
d \mathbf{l} \times \mathbf{r}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
d x & 0 & 0 \\
-x & R &
\end{array}\right|=R d x \hat{\mathbf{z}} .
$$

The magnitude of $r$ is given by $r=\left(x^{2}+R^{2}\right)^{1 / 2}$. Thus for the elementary magnetic field we have:

$$
d \mathbf{B}=\frac{\mu_{0} I}{4 \pi} \cdot \frac{R d x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{\mathbf{z}} .
$$

The total magnetic field is taken by an integration we get

$$
\begin{gathered}
\mathbf{B}=\int_{-L / 2}^{+L / 2} d \mathbf{B}=\hat{\mathbf{z}} \frac{\mu_{0} I R}{4 \pi} \cdot \int_{-L / 2}^{L / 2} \frac{d x}{\left(x^{2}+R^{2}\right)^{3 / 2}}=\hat{\mathbf{z}} \frac{\mu_{0} I R}{4 \pi} \cdot\left[\frac{x}{R^{2}\left(x^{2}+R^{2}\right)^{1 / 2}}\right]_{-L / 2}^{+L / 2} \\
\mathbf{B}=\hat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi} \cdot \frac{L}{R\left((L / 2)^{2}+R^{2}\right)^{1 / 2}} \\
\mathbf{B}=\hat{\mathbf{z}} \frac{\mu_{0} I}{2 \pi R}\left\{\frac{L}{\sqrt{L^{2}+4 R^{2}}}\right\}
\end{gathered}
$$

Similarly for point A we have that $\mathbf{r}=\left(-\frac{L}{2}-x, R, 0\right)$. Thus,

$$
d \mathbf{l} \times \mathbf{r}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
d x & 0 & 0 \\
-\frac{L}{2}-x & R & 0
\end{array}\right|=R d x \hat{\mathbf{z}}
$$

So

$$
\begin{gathered}
d \mathbf{B}=\frac{\mu_{0} I}{4 \pi} \frac{R d x}{\left[\left(\frac{L}{2}+x\right)^{2}+R^{2}\right]^{3 / 2}} \hat{\mathbf{z}} \\
\mathbf{B}=\hat{\mathbf{z}} \frac{\mu_{0} I R}{4 \pi} \int_{-L / 2}^{+L / 2} \frac{1}{\left[\left(\frac{L}{2}+x\right)^{2}+R^{2}\right]^{3 / 2}} d x
\end{gathered}
$$

$$
\begin{gathered}
=\hat{\mathbf{z}} \frac{\mu_{0} I R}{4 \pi R^{2}}\left\{\left.\frac{2 x+L}{\sqrt{L^{2}+4 x L+4 R^{2}+4 x^{2}}}\right|_{-L / 2} ^{L / 2}\right\} \\
\hat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi R}\left\{\frac{2 L / 2+L}{\sqrt{L^{2}+4 L L / 2+4 R^{2}+4 L^{2} / 4}}-\frac{-2 L / 2+L}{\sqrt{L^{2}-4 L L / 2+4 R^{2}+4 L^{2} / 4}}\right\} \\
=\hat{\mathbf{z}} \frac{\mu_{0} I}{4 \pi R}\left\{\frac{L}{\sqrt{L^{2}+R^{2}}}\right\}
\end{gathered}
$$

2. Find the magnetic dipole moment of the loop shown in figure below. All sides have length $w$, and it carries a current $I$.


## Solution:

The superposition principle implies that the magnetic dipole moment will be the resultant of the dipole moments of the two frames. Thus:


$$
\mathbf{m}=\mathbf{m}_{1}+\mathbf{m}_{2}=I w^{2} \hat{\mathbf{y}}+I w^{2} \hat{\mathbf{z}}
$$

Thus $m=I w^{2} \sqrt{2}$ and at a direction on the y-z plane at $45^{0}$ with respect to the positive part of the $y$-axis.
3. A long and thin wire is flown by a current $I$ along the z -direction. The wire is enclosed by a cylindrical magnetic material of radius $a$ and magnetic permeability $\mu_{a}$. Find at all space points the vectors $\mathbf{H}, \mathbf{B}, \mathbf{M}$ and the volume and surface current densities associated with $\mathbf{M}$.


## Solution:



The presence of the magnetic material forces us to work with the auxiliary field $\mathbf{H}$. The problem has an obvious cylindrical symmetry. Assume a loop of radius $r$ centered at the wire, then the field $\mathbf{H}$ is tangent to the loop and we have

$$
H 2 \pi r=I \Rightarrow \mathbf{H}=\frac{I}{2 \pi r} \widehat{\boldsymbol{\phi}}
$$

Since $I$ is the only current of free charges. For this, the relation above holds in all space both for $r>a$ and for $r<a$.

The magnetic field $\mathbf{B}$ is given by:

$$
\begin{aligned}
& \mathbf{B}_{1}=\frac{\mu_{a} I}{2 \pi r} \widehat{\boldsymbol{\phi}}, \quad r<a \\
& \mathbf{B}_{2}=\frac{\mu_{0} I}{2 \pi r} \widehat{\boldsymbol{\phi}}, \quad r>a
\end{aligned}
$$

The magnetization inside the material is:

$$
\begin{gathered}
\mathbf{M}_{1}=\frac{\mathbf{B}_{1}}{\mu_{0}}-\mathbf{H}_{1}=\frac{\mu_{a} I}{\mu_{0} 2 \pi r} \widehat{\boldsymbol{\phi}}-\frac{I}{2 \pi r} \widehat{\boldsymbol{\phi}}=\frac{I}{2 \pi r}\left(\frac{\mu_{a}}{\mu_{0}}-1\right) \widehat{\boldsymbol{\phi}}, \quad r<a \\
\mathbf{M}_{2}=\frac{\mathbf{B}_{2}}{\mu_{0}}-\mathbf{H}_{1}=\frac{\mu_{0} I}{\mu_{0} 2 \pi r} \widehat{\boldsymbol{\phi}}-\frac{I}{2 \pi r} \widehat{\boldsymbol{\phi}}=0, \quad r>a
\end{gathered}
$$

The volume current density associated with $\mathbf{M}$ is given by:

$$
\mathbf{J}_{\mathbf{M}}=\vec{\nabla} \times \mathbf{M}_{1}
$$

Using the expression for curl in cylindrical coordinates we can show that $\mathbf{J}_{\mathbf{M}}=0$.
The surface current density $\mathbf{K}_{\mathbf{M}}$ associated with $\mathbf{M}$ is found as follows: we consider the unitary vector $\hat{\mathbf{r}}$ perpendicular to the surface of the material and with a direction outwards.


The magnetization right after inside the material surface is given by:

$$
\mathbf{M}=\left.\frac{I}{2 \pi r}\left(\frac{\mu_{a}}{\mu_{0}}-1\right)\right|_{r=a} \hat{\boldsymbol{\phi}}=\frac{I}{2 \pi a}\left(\frac{\mu_{a}}{\mu_{0}}-1\right) \hat{\boldsymbol{\phi}}
$$

So for $\mathbf{K}_{\mathbf{M}}$ we have:

$$
\mathbf{K}_{\mathbf{M}}=\mathbf{M} \times \hat{\mathbf{r}}=-\frac{I}{2 \pi a}\left(\frac{\mu_{a}}{\mu_{0}}-1\right) \hat{\mathbf{z}}
$$

