Organic Chemistry **CHEM 145**

2 Credit hrs

Chemistry Department
College of Science
King Saud University

Ву

Prof. Mohamed El-Newehy

Organic Halogen Compounds

Classes and Names of Halogen Compounds

- → Halogen compounds are classified according to the halogen, as fluoro, chloro, bromo, and iodo compounds.
- → *Alkyl halides*, R—X (X may be F, Cl, Br, or I).

Depending on the type of carbon to which the halogen is attached, *Alkyl halides* are subdivided into;

primary (1°), secondary (2°), or tertiary (3°).

Allylic halides.

The halogen attached to a carbon next to a doubly bonded carbon.

▶ Vinylic halides.

A halogen attached directly to a doubly bonded carbon.

→ Aryl halides, Ar-X.

The halogen is directly attached to an aromatic ring.

➡ Benzylic halides, Ar-C-X.

The halogen one carbon away from an aromatic ring.

- **→** Polyhalogen Compounds .
 - Arr CH₂X₂ = methylene halides, as in methylene chloride, CH₂Cl₂
 - → CHX₃ = haloforms, as in chloroform, CHCl₃
 - CX₄ = carbon tetrahalides, as in carbon tetrachloride, CCl₄

Physical Properties of Organic Halides

- **➡** Solubility
 - All organic halides are insoluble in water.
 - → All organic halides are soluble in common organic solvents (benzene, ether, etc.).
- **Density**
 - The simple monofluoro and monochloro compounds are less dense than water,
 - The monobromo and monoiodo derivatives have densities greater than water.
 - → As the number of halogen atoms increases, the density increases.
- They are good solvents for fats and oils.
- Polychloro compounds, such as trichloroethylene and tetrachloroethylene, are widely used as solvents for dry cleaning.

Boiling points

Within a series of halides, the boiling points increase with increasing molecular weights.

Therefore, the boiling points increase in the order F <Cl <Br < I.

$$\begin{tabular}{|c|c|c|c|c|} \hline CH_3F & CH_3CI \\ \hline $(mol\ wt=34;\ bp=-78^{\circ}C)$ & $(mol\ wt=50.5;\ bp=-24^{\circ}C)$ \\ \hline CH_3Br & CH_3I \\ \hline $(mol\ wt=95;\ bp=4^{\circ}C)$ & $(mol\ wt=142;\ bp=42^{\circ}C)$ \\ \hline \end{tabular}$$

→ Within a homologous series, the boiling points also increase regularly with molecular weights.

→ Within a series of isomers, the straight-chain compound has the highest boiling point, and the most branched isomer the lowest boiling point.

Preparation of Halogen Compounds

- **➡** Chloro, Bromo, and Iodo Compounds
 - *→ Direct halogenation of hydrocarbons.*
 - a) Halogenation of alkanes: Alkyl halides

$$RH + X_2 \xrightarrow{\text{uv or heat}} RX + HX \quad (X = Cl, Br)$$

b) Halogenation of alkenes: Allyl halides

$$H_2C = CHCH_2R + X_2 \xrightarrow{\text{uv or heat}} H_2C = CHCHXR + HX$$

c) Halogenation of alkyl benzenes: Benzyl halides

d) Halogenation of aromatic ring: Aryl halides

$$ArH + X_2 \xrightarrow{FeX_3} ArX + HX$$
 $(X = Cl, Br)$

→ Conversion of alcohols: Alkyl halides

$$(ROH + HX (or PX_3 or SOX_2) \xrightarrow{heat} RX (X = Cl, Br, I)$$

- **→** Addition of HX to unsaturated hydrocarbons
 - a) Addition of HX to alkenes: Alkyl halides

$$C = C + HX \longrightarrow C - C \qquad (X = Cl, Br)$$

b) Addition of HX to alkynes: Vinyl halides

$$C = C + HX \longrightarrow C = C \times (X = CI, Br, I)$$

- Halogen Exchange: A Way to Alkyl Fluorides
 - An alkyl chloride or bromide is heated in the presence of a metallic fluoride such as AgF, Hg₂F₂, or SbF₃.

→ The manufacture of chlorofluoro compounds, known as Freons.

The simplest Freon, $CC1_2F_2$, is made as follows.

$$3CCl_4 + 2SbF_3 \xrightarrow{heat} 3CCl_2F_2 + 2SbCl_3$$

Reactions of Halogen Compounds

- The reactions of organic halides fall into three categories
 - \rightarrow Nucleophiic substitution, or S_N , reactions.

Those in which the halogen is replaced by some other atom or group.

→ Elimination, or E, reactions.

Those that involve the loss of HX from the halide.

Formation of organometallic compounds.

Those that involve reaction with certain metals.

Elimination versus Substitution

➡ In general

Elimination is favored over substitution when strongly basic solutions and high temperatures are used.

$$\begin{array}{c} \text{alcohol, KOH} \\ \text{heat} \\ \end{array} \begin{array}{c} \text{H}_3\text{C-CH} = \text{CH}_2 \\ \text{Major product} \\ \end{array}$$

Formation Uses of Organometallic Compounds

- Most organic chlorides, bromides, and iodides react with certain metals to give organometallic compounds, molecules with carbonmetal bonds.
- Grignard reagents are obtained by the reaction of alkyl or aryl halides with metallic magnesium in dry ether as the solvent.
- General reaction

Specific example

Grignard reagents react readily with any source of protons to give hydrocarbons.

- Organic halides form organometallic compounds when treated with metals other than magnesium.
- Organometallic compounds that are made by the reaction of halides with group IA metals (Li, Na, or K).