SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2017; 00:1-16
DOI: 10.1002/sec

RESEARCH ARTICLE

Performance-Based Comparative Assessment of Open
Source Web Vulnerability Scanners

Mansour Alsaleh'* Noura Alomar?, Monirah Alshreef?, Abdulrahman Alarifi', AbdulMalik Al-
Salman?

'King Abdulaziz City for Science and Technology, Riyadh, KSA
2College of Computer and Information Sciences, King Saud University, Riyadh, KSA

ABSTRACT

The proliferation of malicious content on the web and the rapidly growing demand for defending web-based systems
motivated quality assurance practitioners to use cost-effective web penetration testing tools. Although the performance
of leading commercial web vulnerability scanners has been benchmarked and validated, the effectiveness of open source
dynamic testing tools has gained little attention in the literature. The high cost of commercial web vulnerability detection
tools and the lack of sound evaluation of open source scanners contributed to a sharp decline in both static and dynamic
testing of web content. This paper experimentally evaluates the features and the performance of a set of popular open
source web vulnerability detection tools. By analyzing the crawling capabilities of the chosen scanners and identifying
their performance shortcomings, we aim at providing a baseline for aiding designers of open source scanners in building
effective tools. Several trusted security benchmarks were utilized to perform a quantitative comparative performance
assessment of 4 open source web vulnerability scanners. As a case study, 140 unique web-based applications were also
scanned using some selected scanners from those included in the comparative evaluation. While the observed vulnerability
detection accuracy of the majority of the evaluated scanners is high, our findings identify some fundamental limitations in
the crawling capabilities of these scanners. The scanners included in the conducted case study agreed that 12.86% of the
scanned web-based systems were vulnerable to Structured Query Language (SQL) injection attacks whereas Cross-Site
Scripting (XSS) vulnerabilities were discovered in 11.43%. After demonstrating the ways in which different performance
properties of one scanner might correlate with each other and highlighting the inconsistencies between the results reported
by different scanners, we emphasize on the importance of addressing the problem from a software engineering perspective
and we provide recommendations for helping developers to improve their tools’ capabilities. Copyright © 2017 John
Wiley & Sons, Ltd.

KEYWORDS
Internet security; Web application scanner; Web vulnerability; Web security scanner; Dynamic security testing

*Correspondence
Mansour Alsaleh, KACST. E-mail: maalsaleh@kacst.edu.sa

1. INTRODUCTION

million malicious URLs were detected in the first quarter
of 2015 [3]. By 2018, web server vulnerabilities are also

The multi-layered architectures of web-based systems and
their sophisticated interactions with different types of sub-
systems increase the number of security flaws that can be
exploited by attackers. As emphasized by the Open Web
Security Application Project (OWASP) [1], attackers might
follow various paths through the digital infrastructure of
an organization to find security weaknesses that might
cause severe consequences. According to Symantec [2],
over 6500 web vulnerabilities were reported in 2014 and
twenty percent of them were expected to have critical
consequences. Kaspersky also reported that more than 93

Copyright © 2017 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2010/06/28 v2.00]

expected to be ranked as the first in the list of the most
serious cybersecurity attacks [4].

Dynamic security testing and static code analysis are
of the main approaches that are used for detecting web
vulnerabilities. Software developers use web vulnerability
scanners to automate the process of examining the security
of their web-based applications and conduct large-scale
security analyses on many different web applications [5].
While automated static code analysis techniques are
more effective for detecting security defects (e.g., SQL
vulnerabilities) [6, 7], the adoption of these techniques

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

is limited compared to the widespread application of
automated dynamic security testing tools. One of the
reasons that contributed to limiting the adoption of static
code analysis by software developers is that it cannot
be performed without accessing the source code of the
evaluated web-based application, which might not always
be accessible [5].

There are many commercial tool-based web vulnera-
bility detection approaches for identifying web security
defects. IBM Security AppScan [8], HP weblnspect [9],
Acunetix Web Vulnerability Scanner [10] are all exam-
ples of commercial dynamic web vulnerability detection
tools. Although these scanners are considered state-of-
the-art and were proved to be effective in identifying
and analyzing security vulnerabilities, their utilization
is limited to the developers who can afford their high
prices [11-14]. In addition, a large percentage of the web
content is developed by either individual developers or
small and medium-sized enterprises that do not follow a
secure software development life cycle and thus pay more
attention to delivering the functionality of their systems
than dealing with system security complexities. Such web
applications and systems are vulnerable to various attacks
compromising their web servers’ code integrity [15]. Due
to the high impact of the propagation of security attacks
on the web, there is a high demand for facilitating the
vulnerability detection activities by providing effective,
efficient and easy to use web vulnerability scanners. As an
attempt to fulfill this demand, our study focuses on eval-
uating the performance of open source web vulnerability
scanners and determining whether their cost-effectiveness
negatively correlates with their detection capability and
accuracy.

In this paper, we conduct a comprehensive evaluation
of the performance of a set of open source dynamic
web application security testing tools. These tools
work by crawling or scanning all web pages within a
domain and automating the security testing process by
randomly simulating attacking scenarios [16]. Although
web security scanners might be effective in identifying
security flaws and malicious content, previous studies
proved that there are inconsistencies between the results
reported by different scanners [17-19]. Further, these
tools vary in their performance characteristics, types of
detected vulnerabilities and crawler coverage [17-19].
This in turn decreases the level of trustworthiness in
web vulnerability scanners and increases the demand for
conducting experiments that quantitatively evaluate their
quality and accuracy.

Our study started by reviewing some of the currently
available open source dynamic security testing tools and
choosing four of them based on a predefined selection
criteria. After performing a comparative evaluation of the
performance of the four chosen scanners, two scanners
were chosen to be included in a case study which
utilized these tools to detect the security flaws in 140
unique web-based applications. Wapiti, Skipfish and two

M. Alsaleh et al.

versions of Arachni open source scanners were studied
in our comparative assessment whereas the experimental
evaluation performed in our case study included Wapiti
2.3.0 and Arachni 0.4.3 only.

Of the four evaluated scanners, our results show that
Skipfish 2.1 [20] is the fastest. In terms of crawler
coverage; however, Arachni 1.0.2 [21] ranks first with a
coverage percentage of 94%. We utilized the benchmark
provided by the Web Application Vulnerability Scanner
Evaluation Project (WAVSEP) [22] to evaluate the
accuracy of the four scanners in question. Our findings
reveal that the best SQL and XSS vulnerability detection
rates were obtained by Arachni 1.0.2 which detected 100%
of the SQL test cases and 87.67% of the XSS test cases.
After scanning a sample of 140 websites using Arachni
0.4.3 and Wapiti 2.3.0 [23], we found that both scanners
agreed that at least 21% of the assessed websites had
high severity security vulnerabilities. Arachni 0.4.3 and
Wapiti 2.3.0 also found that 12.86% of the evaluated
websites were vulnerable to SQL attacks whereas 11.43%
of them had XSS vulnerabilities. Given that the results
of our comparative evaluation did not show significant
performance differences (e.g., scanning speed) among
the scanners while the results of the conducted case
study revealed high level of disagreement between the
reports generated by different scanners, we conclude
that the inconsistencies between the reports generated by
different scanners might not necessarily correlate with
their performance properties. Further research is therefore
needed to investigate the factors that could degrade the
effectiveness of web vulnerability detection scanners and
thus lead them to report inconsistent results.

Contributions. We frame the contributions of our work as
follows.

1. COMPARATIVE EVALUATION OF OPEN SOURCE
WEB VULNERABILITY SCANNERS. After reviewing
currently available open source web vulnerability
scanners, a comparative evaluation of the security
features as well as the performance of four web
vulnerability detection tools is conducted. Two versions
of Arachni scanner as well as Wapiti and Skipfish
scanners are evaluated in terms of speed, crawler
coverage, detection accuracy and extra supported
features. The conducted evaluation is based on rigorous
performance indicators as well as standard security
benchmarks.

2. CASE STUDY ON THE SECURITY STATE OF WEB-
BASED SYSTEMS. As a second step for evaluating
the performance of web vulnerability detection tools,
a comprehensive web vulnerability assessment on 140
web-based applications is conducted. Two selected
tools were utilized to identify the types, quantities
and degrees of severity of security vulnerabilities that
exist in the evaluated web content. The results reported
by these scanners are then analyzed, aggregated,
compared and linked to the results obtained from our

Security Comm. Networks 2017; 00:1—16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Alsaleh et al.

scanners’ comparative evaluation experiment to clearly
understand the detection accuracy of these tools in
various scenarios.

3. DESIGN GUIDELINES. We present some recommen-
dations for helping developers of web vulnerabilities
scanners to improve their tools’ capabilities.

Organization. We first describe the steps followed to
review, compare and select open source web vulnerability
scanners in Section 2. We then present the results of
the conducted comparative evaluation in Section 3. In
Section 4, we use two web vulnerability scanners to detect
the security vulnerabilities in a large collected dataset.
Further discussion, design guidelines for tool developers
and the related literature are then presented in Section 5,
Section 6 and Section 7, respectively. We present the
limitations and and future work in Section 8 and conclude
in Section 9.

2. WEB VULNERABILITY SCANNERS:
EVALUATION APPROACH

We followed a structured research methodology that
focuses on addressing the problem from multiple
perspectives. We started by reviewing some popular
open source web vulnerability scanning tools based on
a predefined criteria. We then randomly chose a set of
web-based applications and scanned them using some
of the surveyed open source scanners. Three of them
were then selected to be included in our detailed open
source web vulnerability scanners comparative evaluation.
Fig. 1 summarizes the web vulnerability scanners and
security benchmarks utilized throughout each phase of
our evaluation approach. The following subsections further
explain the decisions taken throughout the phases of the
comparative assessment.

2.1. Web Vulnerability Scanners Selection

The first phase of our study involved conducting an initial
survey of the most popular open-source web vulnerability
assessment tools. Six scanners were evaluated against
a predefined criteria that considers the performance
properties of the scanners as well as their crawler coverage
and types of web vulnerabilities they can identify (see
Table I). The open source web vulnerability assessment
scanners that were included in our survey are Skipfish,
Arachni, Wapiti, [ronWASP, Vega [24] and w3af [25].

For each scanner, we investigated the provided
security scanning and visualization features, the supported
operating systems, and the scanning scope. In order to
evaluate these scanners and include the most effective
ones in our comparative evaluation, we chose the best
four scanners and tested them on some randomly selected
websites. These scanners are Wapiti, Arachni, Skipfish
and IronWASP. In the testing phase, Wapiti, Arachni

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

and Skipfish were installed on Ubuntu 12.04 whereas
IronWASP [26] was installed on Windows 8.

Based on the scanning results obtained in the testing
phase, two web vulnerability scanners were chosen to be
included in the conducted comparative assessment: Wapiti
2.3.0 and Arachni 0.4.3. In fact, after comparing the results
reported by the four scanners, we found inconsistencies
between the types and quantities of security vulnerabilities
reported by IronWASP and the other three scanners. Given
this and the limited reporting features of IronWASP, we
did exclude IronWASP scanner. Skipfish was also not
included in the security evaluation conducted in our case
study. However, we included Skipfish in our comparative
evaluation of web vulnerability detection tools in order
to compare its speed with those of Wapiti and Arachni
scanners.

2.2. Web Vulnerability Scanners Comparison

As a pre-step to evaluating the security of a sample
of 140 distinct web-based applications, we conducted a
comparative evaluation of four web vulnerability detection
tools which are: Arachni 0.4.3, Arachni 1.0.2, Wapiti
2.3.0 and Skipfish 2.10. The aim of this evaluation
was to assess the effectiveness of these scanners and
decide whether their reported results will accurately
reflect the security state of the websites examined in our
case study. We evaluated the scanning speed of each
tool, their crawler depth and their vulnerability detection
accuracy. Our evaluation criteria also considered the extra
features supported by each scanner (e.g., reporting and
visualization services) and the types of web vulnerabilities
that can be discovered by each scanner. Table I summarizes
the criteria that was defined to evaluate the chosen
web scanners, which covers the essential performance
characteristics that allowed us to base our evaluation on
rigorous standards and benchmarks.

Three vulnerability test websites were considered for
evaluating the speed of each scanner: Web Scanner
Test Site [27] and two Acunetix [28] sites. These test
websites were fully scanned using the selected four web
vulnerability scanners. We then compared the scanning
times of the scanners and ranked them accordingly.
Similarly, Altoro Mutual [29] and WAVSEP [22] were
utilized for assessing the accuracy of the scanners. We also
used the Web Input Vector Extractor Teaser (WIVET) [30]
benchmarking project to examine the crawling capabilities
of the evaluated scanners. To assess the accuracy of each
scanner, we calculated: (1) the True Positive Rates (TPRs);
(2) the True Negative Rates (TNRs); (3) the False Positive
Rates (FPRs); (4) the False Negative Rate (FNRs); (5)
the Positive Predictive Values (PPVs); (6) the Negative
Predictive Values (NPVs); (7) and the False Omission
Rates (FORs) [31,32]. We also measured the vulnerability
detection accuracy of the evaluated scanners and their
associated f-measures.

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners M. Alsaleh et al.

1. Surveying OS Web 2. Testing OS Web 3. Selecting the Most 4.Comparingthe
Vulnerability Scanners Vulnerability Scanners Appropriate Scanners performance and features
of the selected scanners

WAVS/H:

wehaplcn sy s Web Apicaton lnarabitySeaer

e |
st N 4] sxnist NG o v
* % ‘/ * AltoroMutual »
acachoi
v
b 4

piplduseycarg [RONWASP

Web Scanner Test Site

»p
%\' @VEGA *ﬁl ubuntu ai
arathoi | %ﬁ e y ‘%,;

WIVET
Macunetix

Wal

\"’% 28 Windows 8 “”

TRONWASP

IRONWASP

Figure 1. Web Vulnerability Scanners’ Comparison: Research Approach

Scanning speed
Visualization features
Scanning scope
Export file formats
Supported operating systems
Consistency with other scanners
Supported programming languages
Availability of web-based GUI
True Positive Rate (TPR)
True Negative Rate (TNR)
False Positive Rate (FPR)
False Negative Rate (FNR)
Positive Predictive Values (PPV)
Negative Predictive Values(NPV)
False Omission Rate (FOR)
Accuracy
F-measure
Scanning speed
Crawler Coverage

Scanners’ Selection Criteria

Performance
Quantitative measures

Scanners’ Evaluation Criteria

Vulnerability detection accuracy

Visualization features
Reporting features
Ease of configuration
Types of vulnerabilities that can be detected

Features

Table I. Web Vulnerability Scanners’ Comparison: Scanners’ Selection and Evaluation Criteria

Scanner Version webscantest testphp testaspnet Rank (speed) Crawler coverage Rank (Crawler coverage)
(HH:MM:SS) (HH:MM:SS) (HH:MM:SS)
Arachni 0.4.3 01:23:22 00:22:10 01:05:33 2 19% 4
Arachni 1.0.2 12:11:13 00:41:34 01:00:00 3 94% 1
Wapiti 2.3.0 06:20:00 01:30:00 03:30:00 4 44% 3
Skipfish 2.1 00:11:06 00:27:40 00:11:30 1 48% 2

Table Il. The speed and crawler depth results obtained after scanning the Web Scanner Test Site and the two Acunetix sites

. ‘WAVSERP test cases IBM AppScan Test Site (Altoro Mutual) test cases
Scanner Version
SQL (135) SQL FP (10) XSS (73) XSS FP (7) SQL (13) Blind SQL (1) XSS (10)

Arachni 0.4.3 134 2 47 0 9 1 8

Arachni 1.0.2 135 0 64 0 2 0 4

Wapiti 2.3.0 131 2 45 3 5 0 7

Skipfish 2.1 104 0 63 0 1 0 3

Table Ill. WAVSEP and Altoro Mutual: Test Cases Detected by Each Scanner
4 Security Comm. Networks 2017; 00:1—16 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

M. Alsaleh et al.

3. SCANNERS’ COMPARATIVE
EVALUATION: RESULTS AND
ANALYSIS

After using Arachni 0.4.3, Arachni 1.0.2, Wapiti 2.3.0 and
Skipfish 2.10 to scan the chosen test websites, we observed
the scanning behaviors of the evaluated scanners and
quantitatively compared their speed, detection accuracy
and crawler coverage. We then ranked these scanners
accordingly and chose Arachni 0.4.3 and Wapiti 2.3.0 to
be included in our case study (as explained in Section 4).
In this section, we present and discuss the results of our
web vulnerability scanners comparative assessment.

In general, our results show that the speed of the
evaluated scanners was relatively acceptable. However, in
terms of crawler coverage, the obtained WIVET scores for
the four scanners show that 75% of them covered less than
50% of the crawled web-based systems. By considering
the detection accuracy of the evaluated scanners, we
found variations between the scanning results obtained
from Altoro Murual and WAVSEP. For example, all the
scanners detected at least 77% of WAVSEP’s SQL test
cases whereas 75% of them detected at most 38% of
Altoro Mutual’s SQL test cases. However, this might
be due to differences between the security properties
examined by WAVSEP’s and Altoro Mutual’s test cases.
We also observed variations in number and types of web
vulnerabilities that each scanner can detect. However, all
the chosen web scanners were able to discover basic
security defects including database injection attacks, XSS
vulnerabilities and misconfiguration attacks. Further, no
difficulties were faced in understanding the functionality
of the evaluated scanners, as all of them provide sufficient
documentation in their corresponding websites. The
following subsections detail the results of the conducted
comparative assessment.

3.1. Speed

After scanning three test sites and recording the elapsed
scanning times (see Section 2.2), we observed that Skipfish
took at most 28 minutes to scan a test website whereas
Wapiti took at least an hour and a half to perform a full
vulnerability scan. Similarly, the vulnerability assessments
conducted using Arachni scanner consumed at least 23
minutes. Thus, Skipfish is considered the fastest scanner
whereas Wapiti is the slowest one in detecting web based
vulnerabilities. Table II shows the scanning times for each
evaluated scanner.

3.2. Crawler Coverage

We based our evaluation of the crawler coverage of the
evaluated scanners on WIVET scores. The best crawling
coverage percentage was 94% which was obtained by
Arachni 1.0.2. The crawlers of the remaining three
scanners covered at most 48% of the scanned web
applications. As shown in Table II, WIVET results show
that Skipfish 2.1, Wapiti 2.3.0 and Arachni 0.4.3 covered

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

48%, 44% and 19% of the crawled web applications,
respectively.

By linking the crawling coverage with the speed of the
evaluated scanners, note that the excellent crawling ability
of Arachni 1.0.2 could had negatively affected its speed.
After comparing the crawler coverage of Arachni 0.4.3
and Arachni 1.0.2, we noted that the newer release was
slower due to the significant improvement of its crawler.
However, this does not necessarily imply that the advanced
crawling capability of a given web vulnerability scanner
is correlated with its poor performance. For example,
although Skipfish was the fastest scanner, the results show
that the coverage of its crawler was better than the coverage
of both Wapiti 2.3.0 and Arachni 0.4.3.

3.3. Accuracy

We scanned IBM’s AppScan test site (Altoro Mutual)
to evaluate the level of accuracy of the scanning
results reported by the chosen tools. We also used
225 of the test cases included in the Web Application
Vulnerability Scanner Evaluation Project (WAVSEP) to
clearly understand the accuracy weaknesses of the four
evaluated scanners (see Table III). Altoro Mutual site
helped us to test our scanners against 13 SQL test cases,
one blind SQL test case and ten XSS test cases. Similarly,
we scanned the cases presented by WAVSEP benchmark
which included 135 SQL true positive cases, 10 SQL false
positive cases, 73 XSS true positive cases and 7 XSS
false positive cases. Based on WAVSEP benchmark, our
results show that the four scanners were able to detect at
least 104 SQL injection true positives and 45 XSS true
positive cases. However, the majority of Altoro Mutual’s
SQL cases were not detected by Wapiti 2.0.3, Arachni
1.0.2 and Skipfish 2.1. Similarly, all the evaluated scanners
were able to report at least 62% of WAVSEP’s XSS true
positive test cases whereas 50% of the evaluated scanners
detected at most 40% Altoro Mutual XSS vulnerabilities.
For WAVSEP’s SQL and XSS false positive test cases,
the four scanners reported at most 20% SQL cases and
43% XSS cases. Table III details the number of cases
detected by each scanner and Section 5 discusses these
observations.

3.4. Additional Features

To comprehensively evaluate the chosen web vulnerability
scanners, we manually experimented with all the features
offered by these tools and utilized the extra information
documented in their corresponding websites. While we did
not conduct a user study, we did not observe any notable
problems with the graphical user interfaces of these
scanners as we found them user friendly, easy to use and
understandable. Further, the tools provided live feedback
which helped us to easily identify the vulnerable URLs and
understand the types of detected vulnerabilities and their
degrees of severity. Furthermore, we were satisfied with
the vulnerability reporting features of these tools as all of
them provided reports that included detailed statistics and

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners M. Alsaleh et al.
Scanner Version web-based Features Live Detailed User Configuration
Interface Feedback Reports Friendliness
Arachni 0.4.3 Yes More than 10 active and 20 passive checks Yes Yes Easy Flexible
Arachni 1.0.2 Yes More than 10 active and 20 passive checks Yes Yes Easy Flexible
Wapiti 2.3.0 No 10 modules for 9 vulnerability types Yes Yes Easy Basic
Skipfish 2.1 No Different scanning modes and dictionaries No Yes Easy Basic
Table IV. Vulnerability Scanners’ Comparative Assessment: Extra Features
Scanner Version TPR TNR FPR FNR PPV NPV FOR Accuracy F-measure
Arachni 0.4.3 99.26% 80% 20% 0.74% 98.53% 88.89% 11.11% 97.93% 98.89%
Arachni 1.0.2 100% 100% 0% 0% 100% 100% 0% 100% 100%
Wapiti 2.3.0 97.04% 80% 20% 2.96% 98.50% 66.67% 33.33% 95.86% 97.76%
Skipfish 2.1 77.04% 100% 0% 22.96% 100% 24.39% 75.61% 78.62% 87.03%
Table V. Scanners’ Detection Accuracy of SQL Attacks
Scanner Version TPR TNR FPR FNR PPV NPV FOR Accuracy F-measure
Arachni 0.4.3 64.38% 100% 0% 35.62% 100% 21.21% 78.79% 67.50% 78.33%
Arachni 1.0.2 87.67% 100% 0% 12.33% 100% 43.75% 56.25% 88.75% 93.44%
Wapiti 2.3.0 61.64% 57.14% 42.86% 38.36% 93.75% 12.50% 87.50% 61.25% 74.38%
Skipfish 2.1 86.30% 100% 0% 13.70% 100% 41.18% 58.82% 87.50% 92.65%

Table VI. Scanners’ Detection Accuracy of XSS Attacks

explanations about the detected security vulnerabilities.
Further, Arachni vulnerability assessment scanners offer
extra features that allowed us to identify redundant URLs,
classify the scanned URLs according to their security
levels and modify the crawling scope to include or exclude
some web pages.

The four scanners varied in the types and number
of security checks that can be performed. For example,
Arachni 0.4.3 and Arachni 1.0.2 have many plugins that
can be used for performing more than 30 active and
passive vulnerability checks for a wide range of web-
based vulnerabilities. Similarly, nine different types of web
vulnerabilities can be checked using Wapiti 2.3.0 scanner
including SQL and XSS injection attacks, file disclosure
attacks, and XPath attacks. In addition, Skipfish has an
extra feature that helps in improving the crawling coverage
and including unlinked web pages in the vulnerability
scanning process. This feature performs brute-force based
security checks and allows specifying the crawling scope
as minimal, medium or complete. Table IV summarizes
some of our scanners’ additional features.

3.5. Quantitative Measures

Based on WAV SERP test cases, nine metrics were calculated
to review the effectiveness of the four scanners in detecting
SQL and XSS attacks. For each scanner, the true positive
and true negative rates were measured to determine
whether the results reported by the evaluated scanners
truly reflect the security state of the scanned websites.
We also measured the rates of false positives and false
negatives reported by the scanners as well as the positive
predictive and negative predictive values for each scanner.
To clearly understand the detection accuracy of SQL and

SQL Accuracy
SQL F-measure
TPR
FPR

[

)

=3

= |

8

S

¥

Arachni 0.4.3 Arachni 1.0.2 Wapiti 2.3.0 Skipfish 2.1

Web Vulnerability Scanners

Figure 2. Scanners’ Performance: Detection of SQL Vulnerabil-
ities

XSS attacks, the rate of true positives and true negatives
to the total number of test cases and the f-measures were
calculated for each scanner (see Section 2.2 and Table I).
The results of our analysis are presented in Tables V and
VL

Based on the calculated f-measures, the detection
accuracy of SQL vulnerabilities was over 97% in Arachni
0.4.3 and Arachni 1.0.2 (see Fig. 2). Although Skipfish’s
SQL detection accuracy was the lowest, it has a false
positive rate of 0%, a false negative rate of 23% and a
true negative rate of 100%. Furthermore, by considering

Security Comm. Networks 2017; 00:1—16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Alsaleh et al.

the accuracy of each test which is measured through
dividing the sum of true positives and true negatives
by the total number of test cases, the rates of Arachni
and Wapiti scanners were higher than 95%. For SQL
vulnerability detection, the accuracy measures of Arachni
1.0.2 were the best relative to the remaining three scanners.
Further, Skipfish has a true positive rate of 77%, which
was the minimum observed TPR. For SQL attacks, the
positive predictive values of all the scanners were very high
ranging from 98.50% to 100%. Also, the false negative
rates of three of the evaluated scanners were less than
3%. After ranking the four scanners according to their
SQL vulnerability detection rates, Arachni 1.0.2 took the
first position whereas Arachni 0.4.3, Wapiti 2.3.0 and
Skipfish 2.1 took the second, third and fourth positions,
respectively.

The scanners’ performance related to their effectiveness
in detecting XSS vulnerabilities was also evaluated.
Although Skipfish’s accuracy rates for detecting SQL
vulnerabilities were the lowest (see Fig. 2), our results
show that its detection rate for XSS vulnerabilities was
very high in comparison with the values recorded for
Wapiti 2.3.0 and Arachni 0.4.3. For all the evaluated
scanners, we also recorded a false positive rate of 0%
except for Wapiti which had a FPR of 42.86%. Similarly,
for all the four scanners except Wapiti, we also obtained
true negative rates and positive predictive values of 100%.
The lowest true positive rates, f-measures and accuracy
values related to detecting XSS vulnerabilities were
recorded for Wapiti 2.3.0 and Arachni 0.4.3 (see Fig. 3).
While the highest FNR related to SQL vulnerability
detection was recorded for Skipfish (see Table V), the
number of XSS false negatives recorded for Skipfish
was lower than the ones calculated for Arachni 0.4.3
and Wapiti 2.3.0. Similar to our observations for SQL
vulnerability detection, the best accuracy measures related
to the detection of XSS attacks were the ones recorded for
Arachni 1.0.2. However, in contrast to our observations for
SQL attacks, the results show that Skipfish 2.1 was more
accurate than Wapiti 2.3.0 and Arachni 0.4.3 in detecting
XSS vulnerabilities.

We observed that the newer version of Arachni was
the most effective one in detecting SQL and XSS
vulnerabilities. As presented in Tables V and VI, Arachni
1.0.2 has the highest true positive rate, true negative rate,
accuracy value and f-measure. In most of the cases, we did
not note significant differences in performance among all
the evaluated scanners. Generally, the overall performance
of the four scanners was good as the lowest obtained f-
measure was 74.38% and the highest FNR was 38.36%.
Further, the recorded true positive rates for most of the
evaluated scanners are above 86% whereas the worst FPR
is 42.86%. Based on the results obtained after scanning
IBM AppScan test site (see Table III), the highest number
of detected test cases was scored by Arachni. During our
evaluation, scanning IBM AppScan using Arachni 1.0.2
unexpectedly stopped at the end of the experiment. The

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

I XSS Accuracy
I XSS F-measure
B TPR
I FPR

[

5

<

2 |

8

S

o

Arachni 0.4.3 Arachni 1.0.2 Wapiti 2.3.0 Skipfish 2.1

‘Web Vulnerability Scanners

Figure 3. Scanners’ Performance: Detection of XSS Vulnerabil-
ities

results shown in Table III are therefore according to the
number of vulnerabilities detected before experiencing this
technical problem. We also note that it was challenging
to determine if the calculated false negative rates were
actual false negatives or were resulted from some crawler
coverage issues.

4. CASE STUDY: EVALUATING THE
SECURITY STATE OF PART OF THE
WEB CONTENT

We followed our performance evaluation of the scanners
(see Section 3) with an evaluation of the overall security
state of part of the web content as a case study. Two
scanners were chosen for this purpose: Wapiti 2.3.0 and
Arachni 0.4.3. First, we collected a sample of 140 unique
URLSs to popular web-based systems and used the chosen
scanners to assess the security state of the websites in
question (the collected URL dataset is available in [33]).
Based on the quantitative analysis of the security scan
reports generated by Wapiti 2.3.0 and Arachni 0.4.3, a
security holistic view of part of the web content was
then analyzed. In the following sections, we describe
the conducted security scans, analyze the generated scan
reports and compare the results obtained from the two
chosen scanners.

4.1. Dataset and Methodology

In this section, we describe the methodology followed
to collect, scan and analyze a sample of unique 140
URLs. Fig. 4 summarizes the steps followed in our
experiment. The following sections detail the decisions
taken throughout each step in this case study and
present the results of the conducted security vulnerabilities
assessment.

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

Create 2 Amazon EC2 Install the scanners on
instances the cloud VMs
—>of f,bm@-
amazon

webservices™

SEs

L > Wapltl

Scan each URL in the
collected dataset

M. Alsaleh et al.

Compare the results of
Wapiti and Arachni

Analyze scan reports

EL) SearchTerm1.csv
[EL) SearchTerm2.csv
I%] SearchTerm3.csv
l%] SearchTermd.csv
@ SearchTerm3.csv
[EL) SearchTermé.csv
[EL) SearchTermT.csv
I%] SearchTerm8.csv
l%] SearchTerm9.csv

<>

@ SearchTerm10.csv

Figure 4. Arabic Websites Security Evaluation: The Followed Approach

Search for 10
trending keywords

Harvest 40 URLs per keyword

2004-2013

GO ugl

trends

SEOquake
Add-on

o

Collect 10 CSV files Result: 40 URLs per file

A B =
url
bt pz/ v alriy adh.com,/9274
bt pz/Awwew, mu.edu, s3far/%0D
hitt pz/fwww.alarabiya.net/ar/ 3
kit poffwww filgoal.com/Arabic]
http://sabg.orz/wWixfde
bt pz/ e, kitabat.comar/pa)
htp://programsmedia.com,for
httpz//fwww.esm3ha. com /%08
bt prf v aleqt.com/2014/04

@ SearchTerm1.csv
EL] SearchTermZ.csv
EL] SearchTerm3.csv
EL] SearchTermd.csv
EL) SearchTerm3.csv
E'_Q SearchTermb.csv
[EL] SearchTerm7.csv
EL] SearchTerm8.csv
EL] SearchTermd.csv
EL) SearchTerm10.csv

[F- 30 NENRE- T R R TR

i
=)

Figure 5. Collecting the Sample URLs

4.1.1. Dataset Collection

One of the main objectives of this case study is to
evaluate the overall security state of a part of the Web
content. The sample of the examined URLs includes
different websites that vary in size, complexity and topics.
We used Google Trends [34] to select trending search
terms from the period of 2004 to 2013. This was followed
by performing Google searches on the trending keywords
and using SEOquake [35] Firefox extension to harvest the
first thirty URLs obtained from each search (the collected
URL dataset is available in [33]). Fig. 5 describes the
followed steps to collect our dataset.

4.1.2. Methodology

To scan the collected URLs, two virtual machines
were installed on Amazon EC2 [36] cloud-based service.
The two instances were accessed using PuTTY [37]
client and TightVNC [38] remote desktop controller.
This was followed by installing Wapiti and Arachni web
vulnerability scanners on the cloud instances and running
the security vulnerabilities scans for each URL in our
dataset. Note that Arachni was utilized to detect a wider
range of security defects relative to Wapiti which was
restricted to detecting SQL injection and XSS attacks.

‘We then analyzed and compared the results generated by
each scanner to accurately understand the overall security
state of part of the web content. Our analysis is based
on the overall performance of each scanner as discussed

in Section 3. For each website, we recorded the types of
detected vulnerabilities by each scanner and their degree
of severity. We were therefore able to identify the most
common vulnerabilities in the examined URLs, rank them
according to their degree of severity and then obtain an
idea about the general security state of the evaluated URLSs.

4.2. Detected Vulnerabilities

The findings of the conducted experiments and the level
of agreement between the web vulnerability scanners
evaluated in this study are discussed in this section.

4.2.1. Arachni

After scanning 140 unique URLs using Arachni, we
found that 98% of them had security vulnerabilities.
60% of the vulnerable web servers included high-severity
vulnerabilities and 96% had informational vulnerabilities.
Arachni reports also show that 72% of the vulnerable web
servers included low-severity vulnerabilities and 65% had
medium-severity vulnerabilities.

Based on Arachni results, our sample had seven high-
severity, four medium-severity, three low-severity and
three informational web vulnerability types. Table VII
summarizes the types, numbers and severity ratings of
the web vulnerabilities that were detected by Arachni and
ranks them according to their frequency of occurrence.
According to Arachni, around 64% of the web server
with high-severity vulnerabilities were also vulnerable to

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Alsaleh et al.

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

Severity Vulnerability # of Vulnerable URLs Vulnerability Severity Highest Number
CSRF 53 Common Directory Medium 54
XSS 30 XSS High 33
= SQL 21 SQL High 29
‘éc Source Code Disclosure 6 Backup File Medium 27
Backdoor File 5 CSRF High 26
File Inclusion 5 PW Auto-complete Low 25
X-Forward-For 1 Interesting Response Informational 25
Common Directory 68 Backdoor File High 24
é Unencrypted Passwords 43 Source Code Disclosure High 18
§ Backup Files 9 File Inclusion High 10
Unvalidated Redirect 2 Common Sensitive Files Low 10
Common Sensitive Files 77 Email Disclosure Informational 8
é Password Autocomplete 42 Insecure Cookie Informational 7
Directory Listing 4 Unencrypted Password Medium 5
= Directory Listing Low 1
é Interesting Response 123 X-Forward-For High 1
% Insecure Cookie 90
:E Email Disclosure 45 Table VIII. Arachni: Highest Number of Occurrence of each

Table VII. Arachni’s Reported Vulnerabilities: A Summary

cross-site request forgery (CSRF) attack. Further, cross-
site scripting vulnerabilities (XSS) were the second most
frequently observed security issues in our sample (36% of
the scanned URLs that had high-severity vulnerabilities).
Arachni also reported that 15% of the sample were
vulnerable to SQL injection attacks. Also, 4% of the
evaluated websites had backdoor files and file inclusion
vulnerabilities. Source code disclosure vulnerabilities were
also observed with a percentage of 7% of our URLs
that had high-severity vulnerabilities. The most spread
high-severity vulnerabilities in the evaluated web-based
applications were CSRF, XSS and SQL injection attacks.

As presented in Table VII, 90 of the scanned web
servers were vulnerable to four types of medium-severity
vulnerabilities. Among medium-severe vulnerabilities, at
least 75% were vulnerable to the attacks related to the
use of common directories on web servers. Arachni’s
results also showed that at least 30% of our evaluated
websites did not implement proper encryption mechanisms
(e.g., users’ credentials were sent without encryption).
Arachni also reported that 6% had stored their backup
files in the same web servers. Furthermore, unvalidated
redirect security defects were observed in 2% of the
scanned URLs with medium-severity vulnerabilities. In
short, 65% of the evaluated websites had medium-severity
vulnerabilities that could have been caused by incorrect
software development practices.

Three types of low-severity web vulnerabilities were
detected by Arachni in at least 71% of the evaluated URLs.
In at least 77% of these vulnerable web servers, Arachni
was able to locate some files (e.g., robot.txt, sitemap.xml
and config.php) that might reveal sensitive information
about the web servers in question. For instance, attackers
might use such files to view the names of some hidden
directories or disclose information about the configurations

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Vulnerability Type

Vulnerability Number of Vulnerable URLs Highest Number
XSS 64 600
SQL 39 234

Table IX. Wapiti: Detection of SQL and XSS vulnerabilities

of the respective servers. In 30% of the sample, Arachni
was also able to find some form fields with password
auto-completion option enabled. Similarly, Arachni reports
show that a directory listing option was permitted in 4% of
the URLSs that included low-severity vulnerabilities.

Informational vulnerabilities were found in 95% of our
sample in which more than 92% were related to receiving
“Not Found” error message (i.e., 404 HTTP responses)
from the requested web servers. Arachni also reported
that over 67% of the evaluated URLs had informational
vulnerabilities related to sending data using unencrypted
cookies. In 32% of the collected URLs, Arachni was also
able to discover some email disclosure vulnerabilities in
which some email addresses that were written in some
scripts or code comments were accessible by the scanner.

This experiment enabled us to identify the most
spread web vulnerabilities and rank them accordingly.
Without considering the severity degrees of the detected
vulnerabilities, our results show that the average number
of web vulnerabilities found in one web server was 21.
For each web vulnerability type, we recorded the highest
number of vulnerabilities found in one web server. For
example, the highest number of SQL injection, XSS and
CSRF vulnerabilities found in a website was 29, 33 and
26, respectively. For each vulnerability type, Table VIII
ranks the number of web vulnerabilities detected in one
web server based on their frequency of occurrence.

4.2.2. Wapiti

We wused Wapiti to detect two types of web
vulnerabilities: SQL injection and XSS attacks (see Fig. 7
for a sample scan result). Based on Wapiti results, 86 out

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

M. Alsaleh et al.

SQL Injection XS5

Wapiti Wapiti

Arachni
Arachni

21 30

Figure 6. Wapiti vs Arachni: Detection of Vulnerable URLs

of our collected 140 URLs had either SQL injection or
XSS vulnerabilities. Around 92% of the 86 vulnerable
web servers had high-severity SQL injection or XSS
vulnerabilities. Wapiti also reported that at least 19%
of our collected sample were vulnerable to low-severity
risks. Wapiti’s scan results also indicated that at least
81% of the URLs that had high-severity vulnerabilities
were vulnerable to SQL injection attacks. Similarly, Wapiti
detected high severity cross-side scripting vulnerabilities
in 28% of the evaluated websites. The highest numbers
of SQL injection and cross-side scripting vulnerabilities
discovered in one web-based application were 600 and
234, respectively. Additionally, Wapiti found that the
highest number of HTTP internal server error responses
received from one web server is 759. Table IX summarizes
the number of URLs that were reported as vulnerable to
high severity XSS or SQL attacks as well as the highest
numbers of SQL or XSS vulnerabilities that were found in
one web server.

4.2.3. Arachni and Wapiti: A Comparison

After scanning the same sample using Arachni and
Wapiti, we compared their results and quantified the
number of URLs that were reported by the two scanners
as vulnerable to SQL injection or XSS attacks. Based on
the reports generated by Arachni, 15% of our collected
sample were vulnerable to SQL injection attacks. However,
the number of URLs that were reported as vulnerable
to SQL injection attacks by Wapiti scanner was at least
two times higher than the Arachni’s one. According to
Wapiti, around 46% had SQL injection vulnerabilities.
Both scanners agreed that 12.86% of the evaluated sample
was vulnerable to SQL injection attacks. On the other
hand, the findings of our comparison also showed that
11.43% of the scanned URLSs were reported as vulnerable
to cross-side scripting attacks by both scanners. For XSS
vulnerabilities, there was a little difference between those
reported positive by the two scanners (i.e., Wapiti reported
27.86% relative to 21.43% reported by Arachni’s). Both
Wapiti and Arachni agreed that at least 12.86% were
vulnerable to SQL injection attacks whereas 11.43% had
XSS vulnerabilities (see Fig. 6).

10

Blind SQL vulnerability in http://www.efa.com.eg/dawry.php via injection in the pa
rameter tou

Evil url: http://www.efa.com.eg/dawry.php?week=2&tou=sleep%287%29%231
L+ attackGET http://www.efa.com.eg/dawry.php?week=3&tou=27
Blind SQL vulnerability in http://www.efa.com.eg/dawry.php via injection in the pa
rameter tou

Evil url: http://www.efa.com.eg/dawry.php?week=3&tou=sleep%287%29%231
+ attackGET http://www.efa.com.eg/dawry.php?week=4&tou=27
Blind SQL vulnerability in http://www.efa.com.eg/dawry.php via injection in the pa
rameter tou

Evil url: http://www.efa.com.eg/dawry.php?week=4&tou=sleep%287%29%231
[+ attackGET http://www.efa.com.eg/dawry.php?week=5&tou=27
Blind SQL vulnerability in http://www.efa.com.eg/dawry.php via injection in the pa
rameter tou

Evil url: http://www.efa.com.eg/dawry.php?week=5&tou=sleep%287%29%231
+ attackGET http://www.efa.com.eg/dawry.php?week=6&tou=27
Blind SQL vulnerability in http://www.efa.com.eg/dawry.php via injection in the pa
rameter tou

Figure 7. Wapiti Web Vulnerability Scanner: Sample scan result

5. FURTHER DISCUSSION

We combined the results of our first experiment, which
compared the performance of four scanners based on
objective measures, with the findings of the second
experiment which evaluated the performance of two
scanners on a large set of selected URLs. Before
conducting our case study and based on the results
obtained from our scanners’ comparative evaluation, we
expected Arachni to report less number of security
vulnerabilities compared to Wapiti, as the crawler coverage
of Arachni was 19% whereas Wapiti’s crawler coverage
was 44%. In our case study, we observed that the number
of SQL and XSS vulnerabilities reported by Wapiti was
higher than the results reported by Arachni. As shown
in Table VII, Arachni’s reports showed that 15% of our
sample was vulnerable to high severity SQL attacks and
21% of the collected URLs were vulnerable to high-
severity XSS attacks. According to Wapiti, around 46% of
the URLs examined in our case study were vulnerable to
SQL attacks and XSS vulnerabilities existed in 28% of our
sample. However, this might not necessarily correlate with
Wapiti’s crawler coverage capabilities as our observations
also showed that Wapiti had the highest FPR for XSS and
SQL attacks (as shown in Tables V and VI). Additionally,
the results showed that Arachni’s vulnerability detection
rates were higher than Wapiti’s ones. Hence, because
Arachni’s crawler coverage was the lowest, there is a
possibility that many web pages were not reached by
Arachni’s crawler.

Although there were little differences in f-measures and
detection accuracy rates for SQL and XSS vulnerabilities
between Wapiti and Arachni, we observed that Wapiti had
higher false negative rates and lower true negative rates for
both SQL and XSS attacks (see Tables V and VI). Thus,
although Wapiti’s crawler coverage rate was higher than
Arachni’s one, there is a possibility that Wapiti had not
detected some vulnerable URLs that were examined in the
conducted case study. For XSS attacks, we also observed
that Wapiti 2.3.0 and Arachni 0.4.3 had the lowest true
positive rates compared to Skipfish 2.1 and Arachni 1.0.2.
The percentage of URLs that were vulnerable to XSS
attacks might therefore be higher than those reported by
the two scanners included in our case study. This finding
might also be supported by the number of WAVSEP XSS
true positive test cases that were detected by Arachni 0.4.3

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Alsaleh et al.

and Wapiti 2.3.0 (see Table III). Based on the comparative
evaluation, both scanners had detected at most 47 XSS
cases out of WAVSEP’s 73 true positive XSS test cases.
Further, although both scanners had high true positive rates
for SQL vulnerabilities, Wapiti had detected only 5 out
of 13 Altoro Mutual’s SQL true positive cases whereas
the number of cases detected by Arachni 0.4.3 was 9
(see Table III). Therefore, the number of URLs that were
vulnerable to SQL attacks might also be higher than the
numbers reported by Wapiti and Arachni.

We observed notable differences between the scan
results of Wapiti and Arachni. Although Arachni’s reports
showed that 21 of the examined web servers had SQL
vulnerabilities, Wapiti’s scan results indicated that 64 of
our 140 URLSs were vulnerable to SQL attacks. However,
only 18 URLs were reported as vulnerable to SQL
attacks by the two scanners. For XSS vulnerabilities,
we note that the two scanners agreed that 16 web
servers were vulnerable although each scanner flagged
at least 30 URLs as vulnerable to XSS attacks (see
Fig. 6). Although the results of our scanners’ comparative
assessment did not reveal notable differences between the
performance of the four evaluated scanners, there was a
high level of disagreement between the scan results of
Wapiti and Arachni. This suggests that web vulnerability
detection scanners have limitations that might be related
to their crawling capabilities, detection accuracy, or other
implementation details that need to be researched. Our
observations also show that the slow performance of the
studied scanners might not necessarily imply that the
respective scanner has a good crawling coverage. We
observed that Wapiti’s long scanning time was resulted
from scanning web pages containing similar or duplicate
content. This means that the there was a considerable
increase in the scanning time that was resulted from
sending a high number of unnecessary HTTP requests
and repeatedly filling many form elements without
guaranteeing the coverage of all web pages belonging to
the websites in question.

By observing the highest numbers of XSS and SQL
injection vulnerabilities that existed in one website, we
also note variations between the scan results reported by
Arachni and Wapiti. Although Arachni’s reports showed
that the highest number of SQL injection vulnerabilities
that were found in one website was 29 (as shown in
Table VIII), Wapiti’s scan results indicated that 600 SQL
vulnerabilities were detected in one website. Similarly,
Wapiti found 234 XSS vulnerabilities in one website
whereas the highest number of XSS vulnerabilities
detected in one website by Arachni was 33. There
is therefore considerable differences between the scan
results of Wapiti and Arachni although our quantitative
comparative performance assessment did not reveal
notable differences between the detection accuracy rates
of these scanners. This variation can be either explained
by the crawler coverage which is presented in Table II or
by the false alarm rates of Wapiti and Arachni.

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

Our comparative assessment results showed that
Wapiti’s observed false alarm rate for XSS vulnerabilities
was 42.86% whereas no false positives were recorded
for Arachni 0.4.3 (see Table VI). For SQL injection
vulnerabilities, our observations also showed that a false
positive rate of 20% was observed for the two scanners;
however, our case study showed that there was a notable
difference between the number of SQL vulnerabilities
detected by the two scanners. Because Arachni’s crawler
coverage percentage was poor, there is a possibility that
Arachni’e crawler did not scan all the pages that were
scanned by Wapiti. However, this does not imply that
Wapiti’s results were more accurate since we observed that
Wapiti had repeatedly scanned a considerable number of
URLSs containing similar web content.

6. GUIDELINES AND
RECOMMENDATIONS

Our experimental findings highlighted limitations related
to scanners’ crawling capabilities, reporting and visu-
alization features, efficiency and vulnerability detection
accuracy. In this section, we note some areas that should
be addressed by developers in order to increase the effec-
tiveness of their tools.

We recommend system designers to utilize the available
security benchmarks and test sites (e.g., the ones shown in
Fig. 1) to evaluate the performance of their open source
vulnerability detection solutions. This could contribute
to improving the capabilities of open source scanners as
it would allow comparing the quantities and types of
vulnerabilities that were detected by open source scanners
with those discovered by well-known proprietary scanners
(e.g., IBM Security AppScan [8]). We also recommend
tool developers to improve the crawling capabilities of
their tools by ensuring that all the clickable elements
in a crawled web page are identified and thus all the
web pages that belong to the examined domains are
traversed. For increasing the coverage of attack classes
checked by web vulnerability scanners, tool developers
could also enhance the comprehensiveness of their tests
by validating all possible combinations of inputs to web
forms while ensuring that the efficiency of their tools
is not compromised. The elimination of duplicate links
before starting the vulnerability scanning process is also
recommended for improving the efficiency of vulnerability
detection.

Designers of open source web vulnerability scanners are
also recommended to improve the accuracy of the security
verification checks incorporated in their tools to simplify
the task of manually checking whether the vulnerabilities
reported by these scanners are false positives or could
actually be exploited by attackers [39]. That is, reporting
web pages as vulnerable to exploitable attacks when in fact
they do not exist increases the effort spent by penetration
testers on validating the accuracy of the results reported by

1"

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

these tools. For instance, web vulnerability scanners might
sometimes report security vulnerabilities related to having
cookies that are not flagged as secure when in fact they
store non-sensitive data (e.g., user preferences) that is of
no value to attackers. Platform designers could therefore
address this problem by identifying the characteristics of
non-sensitive cookies to avoid reporting them as potential
security vulnerabilities. Web vulnerability scanners might
also sometimes report vulnerabilities relating to locating
server files without verifying whether the content of these
files could actually disclose hidden information about
the configurations of the web servers in question or not.
We also recommend improving the reporting mechanisms
implemented in open source scanners by presenting the
user with more details about detected vulnerabilities and
highlighting potential false positives. Reports generated by
penetration testing tools should also include more guidance
to draw the testers’ attention to the factors that could
characterize false positives and provide remediation advice
on how to address detected vulnerabilities. Penetration
testers should also be made aware of the circumstances that
could cause a scanner to not detect certain vulnerabilities
or misinterpret the observed behavior of the scanned
website and report a vulnerability that does not exist.

From a usability viewpoint, tool designers are rec-
ommended to implement web-based interfaces of their
open source scanners to allow web developers to access
these scanners and run their scans easily. They are also
recommended to improve the vulnerability reporting and
visualization features of these tools to ensure that users are
able to monitor the scanning processes in real time. Users
should also be provided with various options allowing
them to customize and control the scope of their scans [40].

With the emergence of new client and server side
technologies, the developers of open source vulnerability
scanners should continuously update their solutions to
provide support to a variety of web platforms and
protocols. A significant attention should be given to
resolving the compatibility and interoperability issues that
prevent software developers from scanning their web-
based systems. Although the inclusion of all attack classes
in one database is challenging, tool developers should
ensure that their vulnerability databases are regularly
updated to include newly discovered attacks. In order
for a vulnerability scanning process to be successful
and comprehensive, all applications states should also
be thoroughly examined to ensure that all complex
attack scenarios are handled by the corresponding web
vulnerability scanner [5].

7. RELATED WORK

Prior work addressed web security vulnerabilities by
either researching the ways to improve dynamic testing
techniques [41], proposing or evaluating static analysis
testing mechanisms [42—45] or using these testing

12

M. Alsaleh et al.

approaches to evaluate the security of web-based
systems [46—49]. The majority of research studies that
evaluated the performance of web vulnerability scanners
suggested that they have limited crawling capabilities and
high false positive rates. The findings reported in this paper
show that there is a low level of agreement between the
results reported by different open source web vulnerability
scanners. In the following subsection, we summarize the
literature related dynamic testing tools and the detection of
web vulnerabilities.

7.1. Web Security Scanners: Detection
Effectiveness

Evaluating the security of web-based applications and
detecting the security vulnerabilities in these multi-sourced
systems is a complex problem that can be addressed
in many different ways [50-52]. With the increasing
complexity of web-based systems and the emergence of
new development technologies that vary in their support
for security, the demand for tools that automatically detect
security vulnerabilities is growing [53-55]. Penetration
testing is one of the widely used techniques that is applied
to detect security vulnerabilities in a cost-effective way and
without requiring technical expertise [6,53,56,57].

In spite of the advantages of tool-based web penetration
testing approaches, previous research attempts proved that
web vulnerability scanners have poor performance and
found that they are often unable to detect many security
vulnerabilities [6, 53, 58, 59]. The limited discoverability
capability is also one of the drawbacks of web vulnerability
scanners (i.e., security vulnerability cannot be detected
until the crawler of the corresponding scanner reaches
the URL in question) [5]. Although the results generated
by these scanners are mostly regarded by software
developers as comprehensive and accurate [56], prior work
found that these scanners only detect a subset of the
security vulnerabilities in the evaluated systems and give
a significant number of false alarms [53,56].

Prior work has also addressed the performance of web
security vulnerability scanners by either evaluating the
detection effectiveness of a set of scanners [18, 19, 32,
58] or developing techniques that can be incorporated
into these tools to increase their detection accuracy [5,
60, 61]. Other research attempts focused on comparing
the effectiveness of dynamic testing with other security
testing approaches (e.g., static testing or manual code
review) [62]. Vieira et al. used some commercial web
vulnerability detection tools for quantifying the number
of security vulnerabilities in publicly accessible web
services and observed a high false positive rate [17].
Consistent with our findings, the experimental results
presented in [17] highlight limitations in the vulnerability
detection and crawling capabilities of dynamic testing
tools and show that there are major differences between
the types and quantities of security vulnerabilities detected
by different scanners.

Security Comm. Networks 2017; 00:1—16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Alsaleh et al.

Their findings also suggested that there are variations
between the results reported by different web vulnerability
scanners. Similarly, three commercial web vulnerability
detection scanners were evaluated in [18] by injecting
SQL and XSS vulnerabilities into web-based systems
and testing the scanners’ effectiveness in detecting these
security flaws. Their results furthermore suggest that
these scanners leave some vulnerabilities undetected and
produce inconsistent results. Although the observations
reported in [17, 18] show that the percentages of false
positives were high, the FPRs of 75% of the evaluated
scanners in this study were less than or equal to 20%. This
implies that the inconsistencies between the scan results of
different scanners might not necessarily be linked to their
poor performance.

Doupe et al. [32] also highlighted the limitations in
the crawling capabilities of web vulnerability scanners
after evaluating eight commercial and three open source
scanners. Although some open source scanners were
included in the evaluation conducted in [32], their
comparative assessment is based on scanning one web-
based system that was specifically developed for the
purpose of their study. In our study, we evaluate the
selected scanners based on a systematic approach that
considers scanning a dataset that includes more than 140
distinct web-based systems. Clearly, there is a lack of
studies that thoroughly analyze the effectiveness of open
source web vulnerability scanners based on well-known
security benchmarks and standards.

A number of researchers have focused on identifying the
root causes of web vulnerabilities and proposed solutions
to mitigate the effects of web security attacks [63—-66]. For
instance, as an attempt to explore the correlations between
security vulnerabilities and software faults, Fonseca et al.
analyzed a large collection of security patches and found
that the majority of SQL injection and XSS attacks were
not caused by software bugs [63]. Soska et al. addressed
the maliciousness of web content in a different way by
implementing a classification system that predicts whether
a given web server will be compromised in the future [64].
In this study, we focused on comparing the effectiveness
of two open source web vulnerability scanners in detecting
SQL injection and XSS attacks. Our results show that there
is a high level of disagreement between the results reported
by the two scanners which implies that there is a demand
for improving the efficiency, effectiveness and detection
accuracy of these scanners.

8. LIMITATIONS AND FUTURE WORK

While our web vulnerability scanners’ comparative
evaluation included three scanners that are among the
widely used open source web vulnerabilities detection
tools, our results might not be generalized to all other
similar open source tools. However, our evaluation
approach can be applied to any set of open source or

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

commercial web vulnerability scanners. Although the
dataset collected for our case study included 140 URLs
only, the approach followed to collect, scan, analyze and
evaluate the security state of these web applications can be
applied to other web-based systems as well. The sample
examined in our case study had only 140 URLs which
were collected based on a predefined approach that allowed
us to collect a sample of websites that vary in their
size, complexity and development technologies. Our case
study can therefore be repeated to include a larger URL
dataset. In our case study, we compared the results of
the evaluated scanners based on their detection of SQL
and XSS vulnerabilities only. Future work might consider
other types of web vulnerabilities (e.g. CSRF and Source
Code Disclosure). Future research efforts might also
utilize the methodology followed in this paper to evaluate
commercial web vulnerability scanners. Other research
efforts might also be directed toward investigating the
level of agreement between open source and commercial
web vulnerability scanners. Our experiment could also be
applied on a large set of open source web vulnerability
scanners to further understand the factors that might
contribute to improving the performance of these scanners.
In future work, special attention should also be given
to thoroughly investigating the effect of false positives
on the quantities and types of security vulnerabilities
reported by the scanners. For example, repeating the tests
multiple times could reveal inconsistencies in the scanners’
reports and thus help researchers in drawing more accurate
conclusions on the detection accuracy of the scanners.

9. CONCLUDING REMARKS

The widespread adoption of web vulnerability scanners
and the differences in the functionality provided by these
tool-based vulnerability detection approaches increase the
demand for testing their detection effectiveness. Although
there are many previously conducted research studies
that addressed the performance characteristics of web
vulnerability detection tools by either quantifying the
number of false alarms or measuring the corresponding
crawler coverage, the scope of the majority of these studies
is limited to commercial tools.

Despite the advantages of dynamic testing approaches
in detecting software vulnerabilities at any stage in the
software development process, the literature lacks studies
that comprehensively and systematically evaluate the
performance of open source web vulnerability scanners
based on sound measures. The main objectives of this
study is to assess the performance of open source scanners
from multiple perspectives and to examine whether the
cost-effectiveness of these tools negatively correlates with
their detection capability. We expect the results of this
research work to guide tool developers in enhancing the
software processes followed while designing these tools,
which in turn is expected to encourage software engineers

13

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

to effectively utilize web vulnerability detection scanners
during and after releasing their software products.

The results of our comparative evaluation of a set
of open source scanners highlighted variations in the
effectiveness of security vulnerability detection and
indicated that there are correlations between different
performance properties of these scanners (e.g., scanning
speed and crawler coverage, crawler coverage and number
of detected vulnerabilities). There was a considerable
variance both on types and numbers of detected web
vulnerabilities among the examined tools.

We followed our comparative assessment with a case
study in which we evaluate the level of agreement between
the results reported by two open source web vulnerability
scanners. These scanners were utilized to examine the
web security vulnerabilities in 140 URLs and quantify
the number of low, medium and high degree security
vulnerabilities that existed in the evaluated URLs. By
considering the fact that the examined scanners agreed that
only 18 URLs were vulnerable to SQL injection attacks,
this might suggest that the inconsistencies between the
scan results of different tools might had been caused by
factors other than performance differences. This finding
might also be supported by the fact that although our
scanners’ comparative assessment did not show significant
performance differences among the evaluated scanners, we
observed a high level of disagreement between the scan
results. Therefore, additional research should be directed
toward identifying the factors that lead different widely-
known software verification tools to report inconsistent
results.

ACKNOWLEDGMENTS

This project was supported by NSTIP strategic technolo-
gies program number (11- INF1855-02) in the Kingdom
of Saudi Arabia. Also, we thank the anonymous reviewers
for their comments which helped improve this paper to
its present form. We also thank Monirah Alshreef for
preparing the URL dataset and conducting the experiments
reported in the present study. This work was supported in
part by KACST.

COMPETING INTEREST

The authors declare that there is no conflict of interest
regarding the publication of this paper.

REFERENCES

1. OWASP: The Ten Most Critical Web Application
Security Risks. Technical report, The Open Web
Application Security Project, 2013.

2. Internet Security Threat Report. Technical report,
Symantec, 2015.

14

3.

10.

11.

12.

13.

14.

15.

16.

. Gartner.

. Nuno Antunes and Marco Vieira.

. IBM AppScan.

. HP Web Inspect.

M. Alsaleh et al.

Garnaeva Maria, Chebyshev Victor, Makrushin
Denis, and Ivanov Anton. IT threat evolution in Q1
2015. Technical report, Kaspersky, 2015.

The Next Three Years in Security
Threats. http://www.gartner.com/
smarterwithgartner/the—-next-three-

years—in-security-threats/, 2015.
[Online; accessed: 14-August-2015].
. Adam Doupé, Ludovico Cavedon, Christopher

Kruegel, and Giovanni Vigna. Enemy of the State: A
State-Aware Black-Box Web Vulnerability Scanner.
In USENIX Security Symposium, pages 523-538,
2012.

Comparing
the effectiveness of penetration testing and static
code analysis on the detection of SQL injection
vulnerabilities in web services. In I5th IEEE
Pacific Rim International Symposium on Dependable
Computing, pages 301-306. IEEE, 2009.

. Frank Elberzhager, Jiirgen Miinch, and Vi Tran Ngoc

Nha. A systematic mapping study on the com-
bination of static and dynamic quality assurance
techniques. Information and Software Technology,
54(1):1-15, 2012.

http://www—03.1ibm.com/
software/products/en/appscan, 2015.
[Online; accessed: 15-September-2015].
http://www8.hp.com/us/
en/software-solutions/webinspect—

dynamic-analysis-dast/, 2015. [Online;
accessed: 15-September-2015].
Acunetix Web Vulnerability Scanner. http:

//www.acunetix.com/vulnerability-
scanner/, 2015. [Online; accessed:
September-2015].

Kinnaird McQuade. Open Source Web Vulnerabil-
ity Scanners: The Cost Effective Choice? In Pro-
ceedings of the Conference for Information Systems
Applied Research, volume 2167, page 1508, 2014.
Shay Chen. SECTOOL Market: Price and Feature
Comparison of Web Application Scanners. http:
//goo.gl/ZUKaKs, 2015. [Online; accessed: 17-
November-2015].

15-

David Geer. Are companies actually using secure
development life cycles? Computer, (6):12-16,
2010.

Jim Witschey. Secure development tool adoption in
open-source. In Proceedings of the 2013 companion
publication for conference on Systems, programming,
& applications: software for humanity, pages 105—
106. ACM, 2013.

Giuseppe A Di Lucca and Anna Rita Fasolino.
Testing Web-based applications: The state of the
art and future trends. Information and Software
Technology, 48(12):1172-1186, 2006.

Elizabeth Fong and Vadim Okun. Web application
scanners: definitions and functions. In 40th Annual
Hawaii International Conference on System Sciences.
IEEE, 2007.

Security Comm. Networks 2017; 00:1—16 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.gartner.com/smarterwithgartner/the-next-three-years-in-security-threats/
http://www.gartner.com/smarterwithgartner/the-next-three-years-in-security-threats/
http://www.gartner.com/smarterwithgartner/the-next-three-years-in-security-threats/
http://www-03.ibm.com/software/products/en/appscan
http://www-03.ibm.com/software/products/en/appscan
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://www.acunetix.com/vulnerability-scanner/
http://goo.gl/ZUKaK8
http://goo.gl/ZUKaK8

M. Alsaleh et al.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Security Comm. Networks 2017; 00:1-16 © 2017 John Wiley & Sons, Ltd.

Marco Vieira, Nuno Antunes, and Henrique Madeira.
Using web security scanners to detect vulnerabilities
in web services. In IEEE/IFIP International
Conference on Dependable Systems & Networks,
pages 566-571. IEEE, 2009.

Jose Fonseca, Marco Vieira, and Henrique Madeira.
Testing and comparing web vulnerability scanning
tools for SQL injection and XSS attacks. In 13th
Pacific Rim International Symposium on Dependable
Computing, pages 365-372. IEEE, 2007.

Larry Suto. Analyzing the effectiveness and coverage
of web application security scanners. San Francisco,
October, 2007.

Skipfish scanner. https://code.google.com/
p/skipfish/, 2012. [Online; accessed: 26-
August-2015].

Arachni Web Application Security Scanner Freme-
work. http://www.arachni-scanner.com/,
2015. [Online; accessed: 26-August-2015].

The Web Application Vulnerability Scanners Evalu-
ation Project. https://code.google.com/p/
wavsep/, 2013. [Online; accessed: 27-August-

2015].

Wapiti- web application vulnerability scanner.
http://wapiti.sourceforge.net/, 2014.
[Online; accessed: 27-August-2015].

Vega Vulnerability Scanner. https:
//subgraph.com/vega/, 2014. [Online;

accessed: 28-August-2015].

w3af: Open Source Web Application Security
Scanner. http://w3af.org/, 2013. [Online;
accessed: 28-August-2015].

IronWASP. https://ironwasp.org/, 2014.
[Online; accessed: 28-August-2015].

Web Scanner Test Site.
webscantest.com/, 2015.
29-August-2015].

Test Website for Acunetix Web Vulnerability Scan-
ner. http://testaspnet.vulnweb.com/,
2005. [Online; accessed: 29-August-2015].
AltoroMutual. http://demo.testfire.net/,
2015. [Online; accessed: 29-August-2015].

Web Input Vector Extractor Teaser. https://
github.com/bedirhan/wivet, 2014. [Online;
accessed: 29-August-2015].

Nuno Antunes and Marco Vieira. Benchmarking
vulnerability detection tools for web services. In
IEEE International Conference on Web Services
(ICWS), pages 203-210. IEEE, 2010.

Adam Doupé, Marco Cova, and Giovanni Vigna.
Why Johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In Detection
of Intrusions and Malware, and Vulnerability
Assessment, pages 111-131. Springer, 2010.
Performance-Based Comparative Assessment of
Open Source Web Vulnerability Scanners [List of
Scanned Websites]. https://goo.gl/Xj1FMI,
2016. [Online; accessed: 20-March-2017].

http://
[Online; accessed:

DOI: 10.1002/sec

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

GoogleTrends. https://www.google.com/
trends/, 2015. [Online; accessed: 30-August-
2015].

SEOquake Firefox Extension. http:

//www.seoquake.com/, 2012. [Online; accessed:
30-August-2015].

Amazon Elastic Compute Cloud. http:
//aws.amazon.com/ec2/, 2015. [Online;
accessed: 30-August-2015].

PuTTY. http://www.putty.org/, 2015.
[Online; accessed: 30-August-2015].

TightVNC Software. http://

www.t ightvnc.com/, 2014. [Online; accessed:
30-August-2015].

Andrew Austin and Laurie Williams. One technique
is not enough: A comparison of vulnerability
discovery techniques. In International Symposium on
Empirical Software Engineering and Measurement
(ESEM), pages 97-106. IEEE, 2011.

Hui-zhong Shi, Bo Chen, and Ling Yu. Analysis
of Web security comprehensive evaluation tools.
In Second International Conference on Networks
Security Wireless Communications and Trusted
Computing (NSWCTC), volume 1, pages 285-289.
IEEE, 2010.

Nor Fatimah Awang and Azizah Abd Manaf.
Detecting Vulnerabilities in Web Applications Using
Automated Black Box and Manual Penetration
Testing. In Advances in Security of Information and
Communication Networks, pages 230-239. Springer,
2013.

V Benjamin Livshits and Monica S Lam. Finding
Security Vulnerabilities in Java Applications with
Static Analysis. In Usenix Security, pages 18-18,
2005.

Yichen Xie and Alex Aiken. Static Detection of
Security Vulnerabilities in Scripting Languages. In
USENIX Security, volume 6, pages 179-192, 2006.
Katerina Goseva-Popstojanova and Andrei Perhin-
schi. On the capability of static code analysis to
detect security vulnerabilities. Information and Soft-
ware Technology, 68:18-33, 2015.

Gabriel Diaz and Juan Ramén Bermejo. Static
analysis of source code security: Assessment of tools
against SAMATE tests. Information and Software
Technology, 55(8):1462-1476, 2013.

Abdulrahman Alarifi, Mansour Alsaleh, and Abdul-
Malik Al-Salman. Security analysis of top visited
Arabic web sites. In 15th International Conference
on Advanced Communication Technology (ICACT),
pages 173-178. IEEE, 2013.

Mansour Alsaleh and Abdulrahman Alarifi. Analysis
of Web Spam for Non-English Content: Toward More
Effective Language-Based Classifiers. PloS one,
11(11):e0164383, 2016.

Abdulrahman Alarifi and Mansour Alsaleh. Web
spam: A study of the page language effect on
the spam detection features. In 7Ith International
Conference on Machine Learning and Applications
(ICMLA), volume 2, pages 216-221. IEEE, 2012.

15

https://code.google.com/p/skipfish/
https://code.google.com/p/skipfish/
http://www.arachni-scanner.com/
https://code.google.com/p/wavsep/
https://code.google.com/p/wavsep/
http://wapiti.sourceforge.net/
https://subgraph.com/vega/
https://subgraph.com/vega/
http://w3af.org/
https://ironwasp.org/
http://webscantest.com/
http://webscantest.com/
http://testaspnet.vulnweb.com/
http://demo.testfire.net/
https://github.com/bedirhan/wivet
https://github.com/bedirhan/wivet
https://goo.gl/XjlFMl
https://www.google.com/trends/
https://www.google.com/trends/
http://www.seoquake.com/
http://www.seoquake.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.putty.org/
http://www.tightvnc.com/
http://www.tightvnc.com/

Performance-Based Comparative Assessment of Open Source Web Vulnerability Scanners

49.

50.

51.

52.

53.

54.

55.

56.

57.

16

Abdulrahman Alarifi, Mansour Alsaleh, Abdulmalik
Al-Salman, Abdulmajeed Alswayed, and Ahmad
Alkhaledi. Google penguin: Evasion in non-english
languages and a new classifier. In /2th International
Conference on Machine Learning and Applications
(ICMLA), volume 2, pages 274-280. IEEE, 2013.
Martin R Stytz and Sheila B Banks. Dynamic
software security testing. IEEE security & privacy,
(3):77-179, 2006.

Mansour Alsaleh, Abdullah Algahtani, Abdulrahman
Alarifi, and AbdulMalik Al-Salman. Visualizing
PHPIDS log files for better understanding of web
server attacks. In Proceedings of the Tenth Workshop
on Visualization for Cyber Security, pages 1-8. ACM,
2013.

Mansour Alsaleh, Abdulrahman Alarifi, Abdullah
Algahtani, and AbdulMalik Al-Salman. Visualizing
web server attacks: patterns in PHPIDS logs.
Security and Communication Networks, 8(11):1991—
2003, 2015.

Mark Curphey and Rudolph Arawo. Web application
security assessment tools. Security & Privacy, IEEE,
4(4):32-41, 2006.

Ziyad Alshaikh, Abdulrahman Alarifi, and Mansour
Alsaleh. Christopher Alexander’s fifteen properties:
Toward developing evaluation metrics for security
visualizations. In IEEE International Conference
on Intelligence and Security Informatics (I1SI), pages
295-300. IEEE, 2013.

Noura Alomar, Mansour Alsaleh, and Abdulrahman
Alarifi. Social Authentication Applications, Attacks,
Defense Strategies and Future Research Directions:
A Systematic Review. [EEE Communications
Surveys & Tutorials, 2017.

Brad Arkin, Scott Stender, and Gary McGraw.
Software penetration testing. [EEE Security &
Privacy, (1):84-87, 2005.

Jason Bau, Elie Bursztein, Divij Gupta, and John
Mitchell. State of the art: Automated black-box web
application vulnerability testing. In IEEE Symposium

58.

59.

60.

61.

62.

63.

64.

65.

66.

M. Alsaleh et al.

on Security and Privacy (SP), pages 332-345. IEEE,
2010.

Natasa Suteva, Dragi Zlatkovski, and Aleksandra
Mileva. Evaluation and Testing of Several Free/Open
Source Web Vulnerability Scanners. pages 221-224,
2013.

Andrew Austin, Casper Holmgreen, and Laurie
Williams. A comparison of the efficiency and
effectiveness of vulnerability discovery techniques.
Information and Software Technology, 55(7):1279—
1288, 2013.

Viktoria Felmetsger, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. Toward automated
detection of logic vulnerabilities in web applications.
In USENIX Security Symposium, pages 143-160,
2010.

Yao-Wen Huang, Chung-Hung Tsai, Tsung-Po Lin,
Shih-Kun Huang, DT Lee, and Sy-Yen Kuo. A

testing framework for Web application security
assessment. Computer Networks, 48(5):739-761,

2005.

Matthew Finifter and David Wagner. Exploring the
relationship between Web application development
tools and security. In USENIX conference on Web
application development, 2011.

José Fonseca and Marco Vieira. Mapping software
faults with web security vulnerabilities. In [EEE
International Conference on Dependable Systems
and Networks With FTCS and DCC, pages 257-266.
IEEE, 2008.

Kyle Soska and Nicolas Christin. Automatically
detecting vulnerable websites before they turn
malicious. In Proceedings of USENIX Security,
2014.

R Sekar. An Efficient Black-box Technique for
Defeating Web Application Attacks. In NDSS, 2009.
Abdulrahman Alarifi, Mansour Alsaleh, and Noura
Alomar. A model for evaluating the security and
usability of e-banking platforms. Computing, pages
1-17, 2017.

Security Comm. Networks 2017; 00:1—-16 © 2017 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

	1 Introduction
	2 Web Vulnerability Scanners: Evaluation Approach
	2.1 Web Vulnerability Scanners Selection
	2.2 Web Vulnerability Scanners Comparison

	3 Scanners' Comparative Evaluation: Results and Analysis
	3.1 Speed
	3.2 Crawler Coverage
	3.3 Accuracy
	3.4 Additional Features
	3.5 Quantitative Measures

	4 Case Study: Evaluating the Security State of Part of the Web Content
	4.1 Dataset and Methodology
	4.1.1 Dataset Collection
	4.1.2 Methodology

	4.2 Detected Vulnerabilities
	4.2.1 Arachni
	4.2.2 Wapiti
	4.2.3 Arachni and Wapiti: A Comparison

	5 Further Discussion
	6 Guidelines and Recommendations
	7 Related Work
	7.1 Web Security Scanners: Detection Effectiveness

	8 Limitations and Future Work
	9 Concluding Remarks

