

Estimation of proline In Honey

1

BCH445 [Practical]

Honey:

- It is a supersaturated complex natural liquid that contains about 31% glucose, 38% fructose (honey also contains other sugars with lower concentration).
- In addition, there is a great variety of <u>minor components</u>, including phenolic acids and flavonoids, the enzymes glucose oxidase and glucose oxidase, ascorbic acid, carotenoids, organic acids, free amino acids, proteins, and α tocopherol.
- The actual **composition of honey varies**, depending on many factors such as the: floral source, climate, environmental conditions, and the processing it undergoes.

TABLE 6.2 Nonsugar Honey Components

Major Groups of Compounds	Content		
Nitrogen Compounds			
Total proteins (mg/100 g)	50-1000		
Free proline (mg/100 g)	20-300		
Other free amino acids (mg/100 g)	30-700		
Acids (gluconic, citric, lactic, malic, succinic,			
butyric, propionic, and other) (mg/100g)	10-300		
Ash (Mn, Co, Fe, and others) (mg/100 g)	70-900		
Essential oils (in fresh honey) (mg/100 g)	30-200		
Dyes (carotenoids, anthocyanines, flavones) (µg/100g)	1.5-180		
Vitamins and other active substances (mg/100 g)	0-0.1		

Proline In Honey:

- Most of amino acids content may be as <u>low</u> as one fifth of the total → free amino acids are minor but important component of honey.
- There are approximatly <u>27 free amino acids in honey.</u>
- The major amino acid is proline (50-85%).
- Proline content <u>varies</u> in different honeys according to its **floral type**.
- Also, Proline comes **mainly** from honey bee during the conversion of nectar into honey, which leads to a high variability of the proline content within **honeys** from the same botanical source.

Importance of Proline In Honey :

• The proline content in honey is related to the degree of nectar processing by the bees.

 \rightarrow This makes the honey proline content is a criterion of honey ripeness (Together with other factors related to bees, such as saccharide and glucose oxidase activities).

- Also, proline content in some cases used as indicator for sugar adulteration.
- It was proposed that **natural honey** should have a proline content of more than 180mg/kg.
- A lower proline content could mean that the honey has been adulterated with sugar.
- However, this value can be higher for <u>certain honeys</u> as the proline content depends on <u>honey types.</u>

Practical Part

Objective:

• To determine proline concentration in Honey sample.

Principle:

• <u>Ninhydrin</u> is used to assay amino acids.

1. At neutral pH:

- It destroys each primary α -amino acid and also reacts with the released NH3 to form a deep purple chromogen referred to as Ruhemann's Purple, which has a maximum absorption at about 570 nm.
- The reaction with proline and other imino acids yields a yellow- orange product at neutral pH, as the cyclised N-group is not released.

2. At low pH (a pH of approximately 1.0) (The principle of experiment):

- Ruhermann's purple is also yielded, but it quickly looses an amine residue, which results into colourless derivatives.
- With proline, <u>a red water-insoluble</u> reaction stable product is formed.

Method:

	В	1	2	3	4	5	S1
Standard		0.2	0.4	0.6	0.8	1	
Sample							1
H2O	1	0.8	0.6	0.4	0.2	0	
Formic acid				0.5 ml			
Ninhydrine				2 ml			
 Mix throughly after each addition . Boiling water bath for 10 min and then allow to cool at room temperature for 10 min. (a deep red colour should develop). <u>Add 10 ml. of the 2-propanol-water solution (1:1) were added to each tube .</u> <u>Mix well using Vortex.</u> Measure the absorbance at 520 nm. 							

Results:

Tubes	Abs. At 520 nm	Proline concentration mg/dl
1		
2		
3		
4		
5		
Sample		

Calculation:

- The result you got from the curve x 0.5 (50ml) = A
- A **→** grams
- ? → 1000 grams (1Kg)
- The proline content = -----mg/Kg

Home work:

• Is sucrose used as indicator for sugar adulteration in honey? Can be used alone?