First Semester 1432/1433 H Final Examination 5811 Math Duration: 3 Hours

First Question :

(i) State and prove Baire's Category Theorem.

(*ii*) Let X be a normed space such that absolute convergence of any series always implies convergence of that series. Prove that X is complete.

Second Question :

Prove or disprove each of the following:

- (1) There is a non-reflexive Banach space X whose dual X^* is reflexive.
- (2) For each x in a normed space X, $||x|| = \sup_{f \in X^* \setminus \{0\}} \frac{|f(x)|}{||f||}$.

(3) If X is a Banach space, Y is a normed space and $T_n \in B(X, Y)$ such that $(T_n(x))_{n=1}^{\infty}$ is a Cauchy sequence in Y for every $x \in X$, then $(||T_n)||)_{n=1}^{\infty}$ is bounded.

(4) Any closed linear operator $T: X \to Y$ of normed spaces X and Y is bounded.

(5) If $f \neq 0$ is a linear functional on a normed space X, then $f \in X^*$.

Third Question :

(i) Let $M \neq \phi$ be a closed convex subset of a Hilbert space H. Prove that M contains a unique vector of smallest norm.

(ii) Let X and Y be normed spaces, and let $T: X \to Y$ be a closed linear operator. Prove that:

- (1) The null space N(T) is a closed subspace of X.
- (2) If Y is compact, then T is bounded.

(3) If X is compact, and T is bijective, then T^{-1} is bounded.

Forth Question :

(i) Let $T: l^{\infty} \to l^{\infty}$ be the linear map defined by $T((\xi_i)) = (\frac{\xi_i}{i})$. Show that T is bounded. Is T an open map?. Is T a colsed map?. Justify your answers.

(*ii*) Let $A = (\alpha_{jk})$ be an $r \times n$ matrix of real numbers. Show that A defines a bounded linear operator $A : (\mathbb{R}^n, \|.\|_1) \to (\mathbb{R}^r, \|.\|_2)$, where $\|(\xi_1, ..., \xi_n)\|_1 =$
$$\begin{split} &\sum_{k=1}^{n} |\xi_k|, \, \text{and} \, \|(\eta_1, ..., \eta_r)\|_2 = \sum_{j=1}^{r} \left|\eta_j\right|. \text{ Also, prove that the norm } \|A\| \text{ of } A \text{ given} \\ &\text{ by } \|A\| = \max_k \sum_{i=1}^{r} |\alpha_{jk}| \text{ is compatable with } \|.\|_1 \text{ and } \|.\|_2. \end{split}$$

(iii) Let Y and Z be closed subspaces of a Hilbert space H such that $Y \perp Z$. Prove that the subspace Y + Z is also closed.

Fifth Question:

(i) Let $T: X \to Y$ be a bounded linear operator of normed spaces X and Y. Prove the following:

(1) There is a bounded linear operator $T^{\times} : Y^* \to X^*$ defined by $(T^{\times}(g))(x) = g(Tx)$ for all $x \in X, g \in Y^*$, and $\|T^{\times}\| = \|T\|$.

(2) If T^{-1} exists and bounded, then $(T^{\times})^{-1}$ exists, bounded and $(T^{\times})^{-1} = (T^{-1})^{\times}$.

(3) If X and Y are Hilbert spaces, what is the relation between T^{\times} and the Hilbert adjoint operator T^* ?.

First Semester 1429/1430 H Final Examination 581 Math Duration: 3 Hours

$First \ Question:$

(i) Let X and Y be normed spaces and let $T: X \to Y$ be a non-zero linear operator such that T continuous at a point $x_o \in X$. Show that:

- (1) T is bounded on X.
- (2) ||Tx|| < ||T|| for all $x \in X$ such that ||x|| < 1.

(ii) Let $f : X \to \mathbb{C}$ be a bounded non-zero linear functional, and let $Y = \{x \in X : f(x) = 1\}$. Prove that $||f|| = \frac{1}{d}$, where d is the distance from Y to the origin.

Second Question :

(i) Let X and Y be normed spaces. Prove that if the space B(X, Y) of all bounded linear oprators from X into Y is complete then Y is complete.

(*ii*) Consider the space \mathbb{R}^n with the norm

$$||x|| \max_{1 \le i \le n} |x_i|, \qquad x = (x_1, ..., x_n).$$

Find the dual $(\mathbb{R}^n)^*$ of \mathbb{R}^n with this norm.

(*iii*) Prove that any Hilbert space H is isometrically isomorphic to its dual H^* .

Third Question :

Prove or disprove each of the following:

(1) The normed space $(C[-1,1], \|.\|)$ with the the norm defind by $\|x\| \max_{t \in [-1,1]} |x(t)|$ is a Hilbert space.

(2) Every finite dimensional normed space is reflexive.

(3) every bounded linear operator $T: D(T) \to Y$ is closed, where $D(T) \subseteq X$, X and Y are normed spaces.

(4) If Y is a subspace of a Hilbert space H such that $Y = Y^{\perp \perp}$, then Y is closed in H.

(5) If $X \neq \{0\}$ is a normed space, then its dual $X^* \neq \{0\}$.

Forth Question :

(i) Let T be a non-zero bounded linear operator of a normed space X onto a Banch space Y. Prove that, for each $n \in \mathbb{N}$, the norm closure $\overline{T(B_n)}$ of $T(B_n)$ contains an open ball about 0_Y , where $B_n = B(0_X; 2^{-n}) = \{x \in X : ||x|| <$ 2^{-n} .

(*ii*) Let X be a subspace of l^{∞} consists of all elements $x = (\xi_i)_{i=1}^{\infty}, \ \xi_i = 0$ for all but finite number of *i*'s. Define $T: X \to X$ by $T(x) = (\frac{\xi_i}{i})_{i=1}^{\infty}, \ x = (\xi_i)_{i=1}^{\infty}$.

- (1) Show that T is linear and bounded. (2) Does $T^{-1}: R(T) \to X$ exists?. (3) If T^{-1} exists, is it bounded?.

Fifth Question:

Let X and Y be Banach spaces, and let $T: D(T) \to Y$, be a closed linear operator, where $D(T) \subseteq X$. Prove that:

- (1) If D(T) is closed in X, then T is bounded.
- (2) If $T^{-1}: R(T) \to X$ exists and is bounded, then R(T) is closed in Y.

(3) If $T_n \in B(X,Y)$ such that $(T_n x)_{n=1}^{\infty}$ is a Cauchy sequence in Y, for every $x \in X$, then $(||T_n||)_{n=1}^{\infty}$ is bounded.

First Semester 1424/1425 H The Final Examination 581 Math Duration: 3 Hours

First Question

(i): Define a C*-algebra, then show that the set C(X) of all continuous complex valued functions on a compact set X is a commutative C*-algera with the norm given by $||f|| = \sup_{x \in X} |f(x)|$.

 $(ii): \ {\rm Let} \ \phi: A \to B$ be a *-homomorphism of C*-algebras A and B. Show that

(a) ϕ is continuous.

(b) $\sigma(\phi(x)) \subseteq \sigma(x)$ for each $x \in A$.

Second Question

Prove or disprove each of the following where A is a C^{*}-algebra with identity I and B is a C^{*}-subalgebra of A:

(1) If $x \in B$, then $\sigma_B(x) = \sigma_A(x)$.

(2) If $x \in B$ which is invertible in A, then $x^{-1} \in B$.

(3) If x is a normal element in A, then r(x) < ||x||.

(4) If x is a self-adjoint element in A such that $||x|| \ge 1$, then $||I - x|| \ge 1$.

(5) There exists a non-zero element $x \in A$ such that $\rho(x) = 0$ for every state ρ of A.

(6) If $x, y \in A_{s,a}$ such that $-y \le x \le y$, then $||x|| \le ||y||$.

Third Question

(i) Let H be a complex Hilbert space. Show that for each $\xi, \eta \in H$, the map $\omega_{\xi,\mu} : B(H) \to \mathbb{C}$ defined by $\omega_{\xi,\mu}(x) = \langle x\xi, \mu \rangle$ is a bounded linear functional on B(H).

(*ii*) Prove that the map $\omega_{\xi,\xi} = \omega_{\xi}, \xi \in H$, is positive on B(H) and is a state when $\|\xi\| = 1$.

(*iii*) If $B(H)_*$ is the norm closure of the vector subspace $B(H)_\sim$ of $B(H)^*$, prove that $B(H) \simeq (B(H)_*)^*$.

Fourth Question

Let A be a C^{*}-algebra. Prove that

(i) a linear functional ρ on A is positive if and only if $\rho(I) = \|\rho\|$.

(*ii*) if $x \in A$ and $\lambda \in \sigma(x)$, then there is a state ρ of A such that $\rho(x) = \lambda$.

Fifth Question

Let E and F be Banach spaces and let $\phi:E\to F~$ be a bounded linear operator.

If $\phi^*: F^* \to E^*$ is the adjoint of ϕ , prove that

(i) ϕ^* is $\sigma(F^*, F) - \sigma(E^*, E)$ - continuous and $\|\phi^*\| = \|\phi\|$,

(*ii*) if ϕ is an isometry, then ϕ^* maps the closed unit ball $(F^*)_1$ of F^* onto the closed unit ball $(E^*)_1$ of E^* ,

(*iii*) if M is a subspace of E, then M° is a $\sigma(E^*, E)$ -closed subspace of E^* and $(M^{\circ})_{\circ} = \overline{M}^{norm}$.

2