Laser Resonator & Gaussian Beam_2

¢ Light can take the form of beams that comes as close
as possible to spatially localized and nondiverging
waves.
¢ Two extremes: (a) Plane wave: no angular spread;
(b) spherical wave: diverge in all directions;
¢ Paraxial waves satisfy the paraxial Helmholtz equation!
An important solution of this equation that exhibits the
characteristics of an optical beam is the a wave called the
Gaussian beam.
e The Gaussian beam:
The complex amplitude of a paraxial waves is
U (r) = A(r)exp(—ikz)
A(r) is a slow varying function of position => the envelope is
assumed to be approximately constant locally (within 1)

U(r): satisfy the Helmholtz equation (V> +k*)U(r)=0
=> A(r): satisfy the paraxial Helmholtz equation

v2Ar) —izk 2 _ g

One simple solution to the Paraxial Helmholtz Equation
2 2

A(r):%exp(—ik X ;Zy j Paraboloidal wave

Another solution of the Paraxial Helmholtz Equation
2 2 -
Ar) = exp| ik X1V | gz =z ¢ GRUSSIN
a(z) 2q(z) beam
A paraboloidal wave centered about the pointz = &
& could be complex value; dramatically different
properties acquired when £ is real or complex.
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When & is purely imaginary, i.e. & =-iz,; z,: real =>
the complex envelope of the Gaussian beam
2 2
A(r) —iexp(—lk AN J , q(z) =z +iz,
(2) 20(2) ) z,: Rayleigh range
Separate amplitude and phase of this complex envelope
I U
q(z) z+iz, R(z) 2W?3(2)
1z, iz, . A
ZERiE 27N e e T
R(z) = 2[1+ (z,/2)"1;W (2) = (Az, /= )} 2 [+ (2/2,) ]l

R(z)/z = (W(2)/W,)* =Yoo @y2s

=|q|explig(2)];5(2) = tan™(2/ 2,)

1
(z) Z+1z,

Put all this equation into the complex envelope of the
Gaussian beam

= A(r) = Al V%exp{— )\(Nj(z/) }exp{— Ik X2R+(Zy) + ig(z)}

2 2
P e ey O
—ikz —ik

W( ) { WZ(z)}eXp{ Ikz —1 2RQ) +Ig(2)}
Gaussian-Beam Complex Amplitude A =A/iz,
R(z) =z[1+(z,/z)’]  wavefronts radius of curvature
W (z) = [1+(Z/ZO) }l Beam width

1/2
W, = (42,/7) A, and z, are determined

c(z) =tan™(z/z,) from the boundary

Define beam parameters SOl
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& Proper?ies: ,afunction of axial ()
Intensity 1(r) =|U(r)["  and radial (p)distance

1(p.2) = LW, W (2)F expl- 20 W7 ()] i1o= A F
Intensity is a Gaussian function of the p.
y

I, I, I,

z=0 Z=1, Z =2z,
I
1(0,2) = 1, W, W(2)f =—2—
( ) O[ 0/ ( )] l+(szlzo)2 0 1
Power (at a given z; transverse) 0.5
P :jol (p,2)27pdp = 1,(7W2) /2 2y 7, 2
Independent of z! For p=0

1(p,2) = —

D=0 ™ wi
The ratio of the power carried within a circle of radius
P In the transverse plane at position z to the total

power J‘Op()I(,o,z)27r,od,o_1 ex{ 2,002}

[[1(p.2y270dp e
For p, = W(z); the ratio is ~ 86%; for p, = 1.5W(z2)
the ratio is ~ 99%.
Beam Radius (width):
.+ 86% of the power is carried within a circle of W(z);
W(2); is regarded as the beam radius. The rms width
of the intensity distribution is o= W(z2)/2.
The beam width is governed by

terms of P.

2 .
exp{ 2p } Express I, in
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W(2) =WofL+ (2/2,)° |

W(z) has the minimum value of W, at z = 0, called the
beam waist. W, is the waist radius; 2W, is called the
spot size. The beam radius increases gradually with z.
At z = z,, the beam radius = 212W,,.

At z >> 7, the beam radius W (z) =W, z/z, = 6,2
WO

. " I 6, =

Ly Zy
. g 4
Beam Divergence : 0 2, AW,

If the waist is squeezed => the beam diverges;
A short wavelength and fat beam waist => a

highly directional beam!

Depth of Focus :
Defined as twice the
Rayleigh range 2z,
22, =277 /A
A small spot size (2W,)and a long depth of focus
(2z)can not be obtained simultaneously unless A is

short.
Phase : of the Gaussian beam
2

U(r)= AbWV\éOz) exp{— W’?(Z)}exp{— ikz — ik 25(2) + ig(z)}

e ko _
p(p,z) =kz—¢(z) + 2RQ) ip(p, 2)

On the beam axis p=0=> ¢(0,2) =kz-¢(z)
kz: phase of a plane wave; {(z): retardation

c(z)=tan™(z/z,)
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The total accumulated exces§(2)
retardation as the wave

travels fromz =-0otoz =0
iIst. Guoy effect

Wavefronts: the third component in the above
equation is responsible for wavefront bending.

The surface of constant phase satisfy

kp®

p(p,z)=kz-¢(z) + RD) 2

"+ C(2) and R(z) are relatively slowly varying =>

= cons;[ant within the beam radius on each wavefront

2+2- =270+ equation of paraboloidal wave

2R k \
R(@)+ | / \Z =1,

27—

Properties of the Gaussian Beam at Special Points
> At the plane z = z,, the wave has the following

properties
(i) the beam radius is 212 times greater than the
radius at the beam waist, and the area is larger
by a factor of 2.
(ii) The intensity on the beam axis is 1/2 the
peak intensity
(ii1) The phase on the beam axis is retarded by an
angle m/4 relative to the phase of a plane wave
(iv) The radius of the curvature of the wavefront is
the smallest, so that the wavefront has the
greatest curvature (R = 2z;)
> Near the beam center. At points for which |z|<<z,
and p << Wy, exp|- p?/W?(2)]~ exp|- p?/W2]~1
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so that the beam intensity is approximately
constant. Also, R(z) ~ z,?/z and {(z) ~ 0, so that the
phase = k[z+ p°/2R(2)]=kz[1+ p*/222] ~kz
As a result, the wavefronts are approximately
planar. => Gaussian beam ~ a plane wave near its
center.
Far from the beam waist. At points within the
beam-waist radius (o << W,), but far from the
beam waist (z >> z,)) the wave ~ like a spherical
wave. Since W(z) = Wyz/z, >> Wyand p < W, =>
expl- p?/W?(2)]~1  so that the beam intensity is
~ uniform. Since R(z) ~ z the wavefronts are
approximately spherical. k

spherical

Parameters of a Gaussian Laser Beam:

* A 1-mW He-Ne laser produces a Gaussian beam of
wavelength A = 633 nm and a spot size 2W, = 0.1
mm.

> Angular divergence: 6=W,/z,= A ItW,= 633x10-°
/3.1416/0.05x10-3 ~ 4.03x10-3 rad.

> Depth of focus: 2z, =2n\W,?/A = 2x3.1416

x(0.05x103)2/633x109=2.48x10-2 (m)=2.48 (cm)

» Atz =3.5x10° km (~ distance to moon), the

diameter of the beam 2W(z) ~ 26,z = 2x4.03x10-3x

3.5x10° km = 2.821x10% km = 2.821x10% m

> The radius of curvature R(z) =z[1+(z,/z)’]

(zy=1.24cm);atz=01isR(z) = 0;

atz=1z,is R(z) = 2z,= 2.48 cm;

atz=2z,isR(z) = 2.5z,=3.1 cm;
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» Optical intensity at the beam center:z=0, p=0

2
1(p.2) = =27 exp{ 27 }
W *(z) W*(2)
1( 0, 0) = 2P/nWy? = 2x1/x/(0.005)?> mW/cm?
= 25465 mW/cm?
- W (z,) = V2W,
1(0, z,) = 2P/nW(z,)? = P/nWy? = 1/7/(0.005)?
mW/cm? = 12732 mW/cm?
Point source of 100W at z = 0. At z = z,, 100W is
distributed over 4nz2.
=> |(z,)=100x1000/4/7/(1.24)? = 5175 mW/cm?,
Parameters required to characterize a Gaussian Beam:
* Peak amplitude, direction (beam axis), location of its
waist, and the waist radius (W,) or the Rayleigh
range (zo).

* g-parameter: q(z) =z + iz,. If q(z) =3 + i4 cm at
some points on the beam axis => beam waist lies at
a distance z = 3 cm to the point and that the depth of
focus is 2z, = 8 cm. q(z) is linear on z, q(z)=q, and
q(z+d) = q, =>0, = q,+ d. The g-parameter is
sufficient for characterizing a Gaussian beam.

* Determination of g-parameter: measure the beam
width, W(z), and the radius of curvature, R(z), at an

arbitrary point on the axis => using equation
1 i) il A

e =——]
a(z) z+iz, R(z) 2W?3(2)

or solve z, z,, and W, using the following equations;
R(2) = 201+ (2/2)°] W(2) =Wy[1+ (2/2,)°]}”
W, = (}“Zo/”)l/2
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R=2[1+(2,/2))] W = (A1 7)"?[L+ (2/2,)?]"
= Rz=27"+17 2o(MW?/ 1) = 22 + 2°

= 2, (W2/A)=Re z,=VRe-7*
= VRz-7" ("1 2) =Re

7 R W
1+(AR/I2W?)? 0 iy (a2 [ AR)]"
e Transmission through optical components:
> Transmission through a thin lens: the complex
transmittance of a thin lens of focal length f o
exp(ik?/2f); when a Gaussian beam crosses the lens
its complex amplitude is multiplied by this phase
factor => wavefront is bent, but the beam radius is

not altered 7 A 7 |
g wnw

Wy z, 7 Wo' 2o

VA

* A Gaussian beam centered at z = 0 with waist radius

W, is transmitted through a thin lens located at z;

The phase at the plane of the lens iskz +k(p*/2R) —¢

The phase of the transmitted wave is altered to
kz+k(p®/2R)—c—k(p®12f)=kz+k(p*I2R)—¢
where 1/R’=(1/R)—(1/ f) K *beamdiverging;

R': - beam converging
The transmitted wave is itself a Gaussian beam with
width W' (=W) and radius of curvature R'.
The waist radius of the new beam W,' centered at z';
. W . R
Wo = T a2 onF2 LT o anee
L+ (22 /AR) ] 1+ (AR /2W?)

- representing waist lies
to the right of the lens

Substituting R(z) and W(z) into above equation!
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Waist radius W, = MW,
Waist location  (z — f)=M?(z— f)

Depth of focus 2z, = M*(2z)) Parameter

Divergence 26, = 26,1 M Transformed
Magnification M = M. /(1+ rz)llz
r=2,/(z—f) M, = fl(z—1)]

by a Lens

Consider the limiting case (z-f) >> z;
= r <<1= M= M, = equations of ray optics
* Beam shaping

Beam focusing: a lens is

placed at the waist of a

Gaussian beam

The transmitted beam is then focused to a waist
radius W,' at a distance z' given by

r=—z,/f M, =1 M =1/(1+(z,/ f)*)"?

W, : f
>Wy=—m- % — ;7=
[1+(z0/f)]l 1+(f/2,)°
If the 2z, (depth of focus) >> f (focal length)
=W, = (f /z,)W, = Af I(zW,) =0,f; z ~ f
The incident Gaussian beam is well approximated
by a plane wave at its waist => focused at the focal
plane!

# Smallest possible spot size is desired in many
applications (laser scanning, laser printing, and

laser fusion).
Smallest A and f;
W ~ A /(7zW) thickest incident beam
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The lens should intercept the incident beam, its
diameter D must be at least 2W,; assume D =
2Wo. W, = Af /(aD/2) = 2W, ~ 44F, |
F,= f/D F-number of thelens
A microscope objective with small F-number is
often used!
Beam collimation: a Gaussian beam is transmitted
through a thin lens of focal length f ;
From (z - f)=M?(z—f) 2/f -1
z z/ -1
B
f (z/ f-1)°+(z,/ f)° e
For beam collimation, z' as distance =
as possible from the lens; achieved
by smallest z,/f (short depth of focus and
long focal length)

Zy/f=0

For a given ratio of z,/f => the optimal value of z is
maximum of z'/f ; assume z/f-1 = a and z,/f = b.
0 a
£(a2+b2J:o =a’-b'=0=>z=7,+f
* Reflection from a spherical mirror
Incident Gaussian beam: width W, roc Ry;
Reflected Gaussian beam: width W,, roc R,;
The phase of the incident beam is modified by a
phase factor exp(-ikp®/R)
The relations between W;, R;, W,, and R, are
W, =W,;(1/R,) =(1/R)+(2/R)
- If the mirror is planar=>R=o R, =R,
- If R, = oo, 1.e. the beam waist lies on the mirror
R,=R/2
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- If R; = -R, i.e. the incident beam has the same
curvature as the mirror => R,=R.

* Transmission through an arbitrary optical system
Modification of a Gaussian beam by an arbitrary
paraxial optical A B
system characterized [c D}
by a matrix M. Wl, Rl, o] Wg, R21 d,

The ABCD Law:

_Ag, +B
2 Cg,+D
Transmission through free space: distance d of free
space; ,=0,+d => A=1,B=d, C=0, D=1

=N

Transmission through a thin optical component;

ray position is the same, angle is altered

Y, = yl;gz = Cyl + Dgl

D =n,/n,; 0 I 0

In terms of beam parameters

The optical component is thin => beam width does

not changed => W, = W,;

6,~Y,IR,;6, =y, /R =1/R,=C+D/R,
Paraxial approximation

= 1/q,=C+D/qg, = 0,=¢,/(Cqg,+D)

< o

M =

C D

The matrix used in chapter could be used in
Gaussian beam!
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e Hermite-Gaussian Beams:
> Beam of paraboloidal wavefronts are of importance;
The curvature of the wavefronts could match the

curvature of spherical mirrors that form a resonator
Reflection inside the resonator won’t change the
curvature of the wavefront.

> Consider a Gaussian beam of complex envelope

Ac(xyz)—%e { kxzzq?zy)z} :q(z) =z +1iz,

» Consider a second wave whose complex envelope
A%, y,2) = X[ Tylaeslexpliz(2)]A (x, . 2)
x();y(-);z(-) arereal functions
- Except for an excess phase of z(z) , the phase of

the of the wave have the same phase as that of the
underlying Gaussian wave!

- The magnitude

\/_X \/Ey W, X2+y2
(A/1Z5)x {vv( )} {wm}{vﬁ}“{_ WZ(Z)}

Function of x/W(z) and y/W(z) whose width in the x
and y directions vary with z in accordance with the
same scaling factor W(z). As z increase, the
intensity distribution in the transverse plane
remains fixed (except for a magnification factor
W(z). => Gaussian function modulated in the x and
y directions.

The existence of this wave is assured if three real
function x(-); y(); z(-) could be found such that
A(x, Y, z) satisfies the paraxial Helmholtz equation.

Defining u=~/2x/W(z) and v=~/2y/W(2)
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2 2
1[‘9 2ua—x]+ Léy 2 8yj+kw ()
ou’ ou v ou’ ou
. Three independent variables => assume the flrst
term = -p,, the second term = -, => the third
term = py + p,,
o°x 5y 0% o’y . oy

auz = UE:—/JlX (a) W—Zu@—uz—,uzy (b)

0z 0z
W (2) = = zo[l+(z/zo)2]5 — 1+ 1t (Q)

Equation (a) represents an eigenvalue problem

whose eigenvalues are 14=1=0, 1, 2 ... and whose

eigenfunctions are the Hermite polynomials (H,(u))
x(u) = H,(u)

Hermite polynomials is defined by the recurrence

relation

Hp. (u) =2uH (u)-2IH,,(u)  Hy(u)=LH,(u)=2u
= H,(u)=4u*-2;H,(u)=8u’-12u;---
Similarly, solution for equation (b) is (let z,=m)
y(v)=H,(v)
Solution for equation (c) is (with z4+z4=1+m)
z(z) = (1+m)s(2)
Substitute all the solution into A(x, y, z) and
multiplying by the phase factor exp(-ikz)
=> U ,(x.y.2)

J2x V2y
Ulm(X y,2)= A1m|:W( ):| |:W(Z):|Gm|:w(z):|

2 2

: XSyt
xexp{—lkz—lk RQ) +|(I+m+1)g(z)}

where G, (u) = H, (u)exp(-u®/2)
Hermite-Gaussian function
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- Intensity distribution
Il,m(x1 y! Z) = ‘A1m

Gm
W(2) W(2)] "[W(2)

‘2 Wo TGZ J2x ) \/Ey
|

(0,00 (0,1) (0,2 (113)

Find the formula for the spot size of a TEM o, mode at the spherical mirror of Fig. 5.1
by following the procedure:

(a) Show an equivalent-lens waveguide for this cavity and identify a unit cell such
that the ABCD law will yield the spot size on the spherical mirror directly.
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Confocal Resonator

Confocal resonator

A-¢-D+2=0

R=2f Os(l—% <1 so 2d =R gives

and the resonator is stable, but locateed at the edge of a stable region
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ﬂWz(d)_ .

7Z'W2(d d?
1
(dRz)2

(1-d/R,):

A cavity mode is a field distribution that reproduces itself in relative
shape and in relative phase after a round trip through the system
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