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Beam Optics:
♦ Light can take the form of beams that comes as close

as possible to spatially localized and nondiverging
waves.

♦ Two extremes: (a) Plane wave: no angular spread;
(b) spherical wave: diverge in all directions;

♦Paraxial waves satisfy the paraxial Helmholtz equation!
An important solution of this equation that exhibits the
characteristics of an optical beam is the a wave called the
Gaussian beam.

• The Gaussian beam:
The complex amplitude of a paraxial waves is
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A(r) is a slow varying function of position => the envelope is
assumed to be approximately constant locally (within λ)

U(r): satisfy the Helmholtz equation 0)()( 22 =+∇ rUk
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One simple solution to the Paraxial Helmholtz Equation
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Another solution of the Paraxial Helmholtz Equation
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A paraboloidal wave centered about the point z = ξ.
ξ could be complex value; dramatically different
properties acquired when ξ is real or complex.
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When ξ is purely imaginary, i.e. ξ =-iz0; z0: real =>
the complex envelope of the Gaussian beam
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z0: Rayleigh range
Separate amplitude and phase of this complex envelope

)()(
11

)(
1

2
0 zW

i
zRizzzq π

λ
−=

+
=

)()(
11

22
0

2
0

2
0

22
0

2
0

0 zW
i

zRzz
iz

zz
z

zz
izz

izz π
λ

−=
+

−
+

=
+

−
=

+

( ) [ ] 2/12
0

2/1
0

2
0 )(1)(;])(1[)( zzzzWzzzzR +=+= πλ  

0W=2
0 ))(()( WzWzzR  =

)/(tan)(;)](exp[||1
)(

1
0

1

0

zzzziq
izzzq

−==
+

= ςς   

z
z0

(z2+z0
2)1/2

ζ(z)

⎥
⎦

⎤
⎢
⎣

⎡
+−−⎥

⎦

⎤
⎢
⎣

⎡
−=⇒ )(

)(2
exp

)(
exp

)(
)(

2

2

2
0

0 zi
zR

ikikz
zWzW

WAU ςρρr

⎥
⎦

⎤
⎢
⎣

⎡
+

+
−⎥

⎦

⎤
⎢
⎣

⎡ +
−=⇒ )(

)(2
exp

)(
exp

)(
)(

22

2

22
0

0

1 zi
zR
yxik

zW
yx

zW
W

iz
AA ςr

Put all this equation into the complex envelope of the
Gaussian beam

010 izAA  =Gaussian-Beam Complex Amplitude
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Beam width

wavefronts radius of curvature

Define beam parameters

A0 and z0 are determined
from the boundary
conditions
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* Properties:
Intensity 2|)(|)( rr UI =

a function of axial (z) 
and radial (ρ)distance
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Intensity is a Gaussian function of the ρ.
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For ρ = 0

Power (at a given z; transverse)
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⎥
⎦

⎤
⎢
⎣

⎡
−=

)(
2exp

)(
2),( 2

2

2 zWzW
PzI ρ

π
ρ Express I0 in

terms of P.

The ratio of the power carried within a circle of radius
ρ0 in the transverse plane at position z to the total
power
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For ρ0 = W(z); the ratio is ~ 86%; for ρ0 = 1.5W(z)
the ratio is ~ 99%.
Beam Radius (width):
Q 86% of the power is carried within a circle of W(z);
W(z); is regarded as the beam radius. The rms width
of the intensity distribution is σ = W(z)/2.
The beam width is governed by 
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W(z) has the minimum value of W0 at z = 0, called the
beam waist. W0 is the waist radius; 2W0 is called the
spot size. The beam radius increases gradually with z.
At z = z0, the beam radius = 21/2W0.
At z >> z0, the beam radius zzzWzW 000)( θ==
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θ0 0

0
0 z

W
=θ

Beam Divergence :
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If the waist is squeezed => the beam diverges;
A short wavelength and fat beam waist => a 
highly directional beam!

W0

z0-z0

Depth of Focus :

2z0

21/2W0Defined as twice the
Rayleigh range 2z0.
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A small spot size (2W0)and a long depth of focus
(2z0)can not be obtained simultaneously unless λ is
short.
Phase : of the Gaussian beam
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On the beam axis ρ = 0 => )(),0( zkzz ςϕ −=
kz: phase of a plane wave; ζ(z): retardation

)/(tan)( 0
1 zzz −=ς



Laser Resonator & Gaussian Beam_2

531 Phys- Dr. Abdallah M. Azzeer 5

z

ζ(z)

-π/2
-π/4

-π/2
-π/4

-z0
z0

The total accumulated excess
retardation as the wave
travels from z = -∞ to z = ∞
is π.   Guoy effect
Wavefronts: the third component in the above
equation is responsible for wavefront bending. 
The surface of constant phase satisfy
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Qζ(z) and R(z) are relatively slowly varying =>
~ constant within the beam radius on each wavefront
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Properties of the Gaussian Beam at Special Points
8At the plane z = z0, the wave has the following

properties
(i) the beam radius is 21/2 times greater than the

radius at the beam waist, and the area is larger
by a factor of 2.

(ii) The intensity on the beam axis is 1/2 the
peak intensity

(iii) The phase on the beam axis is retarded by an
angle π/4 relative to the phase of a plane wave

(iv) The radius of the curvature of the wavefront is
the smallest, so that the wavefront has the
greatest curvature (R = 2z0)

8Near the beam center. At points for which |z|<<z0
and ρ << W0, [ ] [ ] 1exp)(exp 2

0
222 ≈−≈− WzW ρρ
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so that the beam intensity is approximately
constant. Also, R(z) ≈ z0

2/z and ζ(z) ≈ 0, so that the
phase
As a result, the wavefronts are approximately
planar. => Gaussian beam ~ a plane wave near its
center.
8Far from the beam waist. At points within the

beam-waist radius (ρ << W0), but far from the
beam waist (z >> z0) the wave ~ like a spherical
wave. Since W(z) ≈ W0z/z0 >> W0 and ρ < W0 =>

so that the beam intensity is
~ uniform. Since R(z) ~ z the wavefronts are
approximately spherical.
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Parameters of a Gaussian Laser Beam:
* A 1-mW He-Ne laser produces a Gaussian beam of

wavelength λ = 633 nm and a spot size 2W0 = 0.1
mm. 

Angular divergence: θ0=W0/z0= λ /πW0 =  633×10-9

/3.1416/0.05×10-3 ≈ 4.03×10-3 rad. 
Depth of focus: 2z0 =2πW0

2/λ = 2×3.1416
×(0.05×10-3 )2 /633×10-9=2.48×10-2 (m)=2.48 (cm)

At z = 3.5×105 km (~ distance to moon), the
diameter of the beam 2W(z) ~ 2θ0 z = 2×4.03×10-3×
3.5×105 km = 2.821×103 km = 2.821×106 m

The radius of curvature 
(z0=1.24 cm); at z = 0 is R(z) = 0;
at z = z0 is R(z) = 2z0 = 2.48 cm;
at z = 2z0 is R(z) = 2.5z0 = 3.1 cm;
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Optical intensity at the beam center: z = 0, ρ = 0
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I( 0, 0) = 2P/πW0
2 = 2×1/π/(0.005)2 mW/cm2

= 25465 mW/cm2

I(0, z0) = 2P/πW(z0)2 = P/πW0
2 = 1/π/(0.005)2

mW/cm2 = 12732 mW/cm2

00 2)( WzW =Q

Point source of 100W at z = 0. At z = z0, 100W is
distributed over 4πz0

2. 
=> I(z0)=100x1000/4/π/(1.24)2 = 5175 mW/cm2.

Parameters required to characterize a Gaussian Beam:
* Peak amplitude, direction (beam axis), location of its

waist, and the waist radius (W0) or the Rayleigh
range (z0).

* q-parameter: q(z) = z + iz0. If q(z) = 3 + i4 cm at
some points on the beam axis => beam waist lies at
a distance z = 3 cm to the point and that the depth of
focus is 2z0 = 8 cm. q(z) is linear on z, q(z)=q1 and
q(z+d) = q2 => q2 = q1+ d. The q-parameter is
sufficient for characterizing a Gaussian beam.

* Determination of q-parameter: measure the beam
width, W(z), and the radius of curvature, R(z), at an
arbitrary point on the axis => using equation
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• Transmission through optical components:
8Transmission through a thin lens: the complex

transmittance of a thin lens of focal length f ∝
exp(ikρ2/2f); when a Gaussian beam crosses the lens
its complex amplitude is multiplied by this phase
factor => wavefront is bent, but the beam radius is
not altered

z

z z’

W0', z0'W0, z0

θ0 θ0'W
R

W'
R'

* A Gaussian beam centered at z = 0 with waist radius
W0 is transmitted through a thin lens located at z;
The phase at the plane of the lens is
The phase of the transmitted wave is altered to

ςρ −+ )2/( 2 Rkkz

ςρρςρ −′+=−−+ )2/()2/()2/( 222 RkkzfkRkkz
)/1()/1(/1   where fRR −=′

The transmitted wave is itself a Gaussian beam with
width W' (=W) and radius of curvature R'.
The waist radius of the new beam W0' centered at z';

R: + beam diverging;
R': - beam converging
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- representing waist lies
to the right of the lens

Substituting R(z) and W(z) into above equation!
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Waist radius
Waist location
Depth of focus
Divergence
Magnification 2/12 )1/( rMM r +=
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Parameter
Transformed

by a Lens

Consider the limiting case (z-f) >> z0;
⇒ r << 1 ⇒ M ≈ Mr ⇒ equations of ray optics
* Beam shaping

Beam focusing: a lens is
placed at the waist of a
Gaussian beam

2W0
2W0'

f
z0

The transmitted beam is then focused to a waist
radius W0' at a distance z' given by
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If the 2z0 (depth of focus) >> f (focal length)
fzfWfWzfW ≈==≈⇒ '

0000
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0 ;)/()/(   θπλ
The incident Gaussian beam is well approximated
by a plane wave at its waist => focused at the focal
plane!
p Smallest possible spot size is desired in many

applications (laser scanning, laser printing, and
laser fusion).
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Smallest λ and f; 
thickest incident beam
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The lens should intercept the incident beam, its
diameter D must be at least 2W0; assume D =
2W0. πλπλ /42)2//( #

'
0

'
0 FWDfW ≈⇒≈

lens  theofnumber -F/#    DfF =
A microscope objective with small F-number is
often used!

Beam collimation: a Gaussian beam is transmitted
through a thin lens of focal length f ;
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z0/f =0
z'/f -1

z/f -1z0/f =0.5
For beam collimation, z' as distance
as possible from the lens; achieved
by smallest z0/f (short depth of focus and 
long focal length)

For a given ratio of z0/f => the optimal value of z is
maximum of z'/f ; assume z/f-1 = a and z0/f = b.
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* Reflection from a spherical mirror
Incident Gaussian beam: width W1, roc R1;
Reflected Gaussian beam: width W2, roc R2;
The phase of the incident beam is modified by a
phase factor
The relations between W1, R1, W2, and R2 are

)/exp( 2 Rikρ−

)/2()/1()/1(; 1212 RRRWW +==
· If the mirror is planar => R = ∞ 12 RR =
· If R1 = ∞, i.e. the beam waist lies on the mirror

2/2 RR =



Laser Resonator & Gaussian Beam_2

531 Phys- Dr. Abdallah M. Azzeer 11

· If R1 = -R, i.e. the incident beam has the same
curvature as the mirror => R2=R.

* Transmission through an arbitrary optical system
Modification of a Gaussian beam by an arbitrary
paraxial optical
system characterized
by a matrix M.
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W1, R1, q1 W2, R2, q2

The ABCD LawThe ABCD Law::
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BAqq
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Transmission through free space: distance d of free
space;                          =>  A=1, B=d, C=0, D=1
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Transmission through a thin optical component;
ray position is the same, angle is altered

12 /1 qDC/q +==>

11212 ; θθ DCyyy +==

θ1 θ2
D = n1/n2;
In terms of beam parameters
The optical component is thin => beam width does
not changed => W1 = W2;

12111222 //1/;/ RDCRRyRy +=⇒≈≈ θθ
Paraxial approximation

The matrix used in chapter could be used in
Gaussian beam!
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• HermiteHermite--Gaussian Beams:Gaussian Beams:
8Beam of paraboloidal wavefronts are of importance;

The curvature of the wavefronts could match the
curvature of spherical mirrors that form a resonator
Reflection inside the resonator won’t change the
curvature of the wavefront.
8Consider a Gaussian beam of complex envelope
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8Consider a second wave whose complex envelope
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· Except for an excess phase of          , the phase of
the of the wave have the same phase as that of the
underlying Gaussian wave!
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Function of x/W(z) and y/W(z) whose width in the x
and y directions vary with z in accordance with the
same scaling factor W(z). As z increase, the
intensity distribution in the transverse plane
remains fixed (except for a magnification factor
W(z). => Gaussian function modulated in the x and
y directions.
The existence of this wave is assured if three real
function                        could be found such that 
A(x, y, z) satisfies the paraxial Helmholtz equation.
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Equation (a) represents an eigenvalue problem
whose eigenvalues are μ1= l = 0, 1, 2 … and whose 
eigenfunctions are the Hermite polynomials (Hl(u))
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Hermite polynomials is defined by the recurrence
relation
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Solution for equation (c) is (with μ1+μ2= l+m)
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Substitute all the solution into A(x, y, z) and
multiplying by the phase factor exp(-ikz)
=> Ul,m(x,y,z)
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Hermite-Gaussian function
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· Intensity distribution
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Find the formula for the spot size of a TEM 00q mode at the spherical mirror of Fig. 5.1 
by following the procedure:

(a) Show an equivalent-lens waveguide for this cavity and identify a unit cell such 
that the ABCD law will yield the spot size on the spherical mirror directly.
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