Beam Optics:

- Light can take the form of beams that comes as close as possible to spatially localized and nondiverging waves.
- Two extremes: (a) Plane wave: no angular spread; (b) spherical wave: diverge in all directions;
- Paraxial waves satisfy the paraxial Helmholtz equation! An important solution of this equation that exhibits the characteristics of an optical beam is the a wave called the Gaussian beam.
- The Gaussian beam:

The complex amplitude of a paraxial waves is $U(\boldsymbol{r})=A(\boldsymbol{r}) \exp (-i k z)$
$A(r)$ is a slow varying function of position => the envelope is assumed to be approximately constant locally (within λ)
$U(\boldsymbol{r})$: satisfy the Helmholtz equation $\left(\nabla^{2}+k^{2}\right) U(\boldsymbol{r})=0$ => $A(r)$: satisfy the paraxial Helmholtz equation

$$
\nabla_{T}^{2} A(\boldsymbol{r})-i 2 k \frac{\partial A(\boldsymbol{r})}{\partial z}=0
$$

One simple solution to the Paraxial Helmholtz Equation

$$
A(\boldsymbol{r})=\frac{A_{1}}{z} \exp \left(-i k \frac{x^{2}+y^{2}}{2 z}\right) \quad \text { Paraboloidal wave }
$$

Another solution of the Paraxial Helmholtz Equation

$$
A(r)=\frac{A_{1}}{q(z)} \exp \left(-i k \frac{x^{2}+y^{2}}{2 q(z)}\right) ; q(z)=z-\xi \quad \begin{gathered}
\text { Gaussian } \\
\text { beam }
\end{gathered}
$$

A paraboloidal wave centered about the point $z=\xi$. ξ could be complex value; dramatically different properties acquired when ξ is real or complex.

When ξ is purely imaginary, i.e. $\xi=-i z_{0} ; z_{0}$: real => the complex envelope of the Gaussian beam

$$
A(r)=\frac{A_{1}}{q(z)} \exp \left(-i k \frac{x^{2}+y^{2}}{2 q(z)}\right) ; \begin{aligned}
& q(z)=z+i z_{0} \\
& z_{0}: \text { Rayleigh range }
\end{aligned}
$$

Separate amplitude and phase of this complex envelope $\frac{1}{q(z)}=\frac{1}{z+i z_{0}}=\frac{1}{R(z)}-i \frac{\lambda}{\pi W^{2}(z)}$

$$
\frac{1}{z+i z_{0}}=\frac{z-i z_{0}}{z^{2}+z_{0}^{2}}=\frac{z}{z^{2}+z_{0}^{2}}-\frac{i z_{0}}{z^{2}+z_{0}^{2}}=\frac{1}{R(z)}-i \frac{\lambda}{\pi W^{2}(z)}
$$

$$
R(z)=z\left[1+\left(z_{0} / z\right)^{2}\right] ; W(z)=\left(\lambda z_{0} / \pi\right)^{1 / 2}\left[1+\left(z / z_{0}\right)^{2}\right]^{1 / 2}
$$

$$
\left.R(\mathrm{z}) / \mathrm{z}=\left(W(\mathrm{z}) / W_{0}\right)^{2} \quad=W_{0} \quad\left(\mathrm{z}^{2}+\mathrm{z}_{0}^{2}\right)^{1 / 2} / \overline{\mathrm{L}(\mathrm{z})}\right]
$$

$$
\frac{1}{q(z)}=\frac{1}{z+i z_{0}}=|q| \exp [i \varsigma(z)] ; \varsigma(z)=\tan ^{-1}\left(z / z_{0}\right)^{z_{0}}
$$

Put all this equation into the complex envelope of the Gaussian beam
$\Rightarrow A(r)=\frac{A_{1}}{i z_{0}} \frac{W_{0}}{W(z)} \exp \left[-\frac{x^{2}+y^{2}}{W^{2}(z)}\right] \exp \left[-i k \frac{x^{2}+y^{2}}{2 R(z)}+i \varsigma(z)\right]$ $\Rightarrow U(\boldsymbol{r})=A_{0} \frac{W_{0}}{W(z)} \exp \left[-\frac{\rho^{2}}{W^{2}(z)}\right] \exp \left[-i k z-i k \frac{\rho^{2}}{2 R(z)}+i \varsigma(z)\right]$
Gaussian-Beam Complex Amplitude $A_{0}=A_{1} / i z_{0}$ $R(z)=z\left[1+\left(z_{0} / z\right)^{2}\right] \quad$ wavefronts radius of curvature $W(z)=W_{0}\left[1+\left(z / z_{0}\right)^{2}\right]^{1 / 2} \rightarrow$ Beam width
$W_{0}=\left(\lambda z_{0} / \pi\right)^{1 / 2}$
A_{0} and z_{0} are determined
$\varsigma(z)=\tan ^{-1}\left(z / z_{0}\right)$
Define beam parameters from the boundary conditions

* Properties:

Intensity $\quad I(\boldsymbol{r})=|U(\boldsymbol{r})|^{2}$
a function of axial (z) and radial (ρ)distance

$$
I(\rho, z)=I_{0}\left[W_{0} / W(z)\right]^{2} \exp \left[-2 \rho^{2} / W^{2}(z)\right] \quad ; I_{0}=\left|A_{0}\right|^{2}
$$

Intensity is a Gaussian function of the ρ.

$$
I(\rho, z)=\frac{2 P}{\pi W^{2}(z)} \exp \left[-\frac{2 \rho^{2}}{W^{2}(z)}\right] \quad \begin{aligned}
& \text { Express } I_{0} \text { in } \\
& \text { terms of } P .
\end{aligned}
$$

The ratio of the power carried within a circle of radius ρ_{0} in the transverse plane at position z to the total
power $\frac{\int_{0}^{\rho_{0}} I(\rho, z) 2 \pi \rho d \rho}{\int_{0}^{\infty} I(\rho, z) 2 \pi \rho d \rho}=1-\exp \left[-\frac{2 \rho_{0}^{2}}{W^{2}(z)}\right]$
For $\rho_{0}=W(z)$; the ratio is $\sim 86 \%$; for $\rho_{0}=1.5 W(z)$
the ratio is $\sim 99 \%$.

Beam Radius (width):

$\because 86 \%$ of the power is carried within a circle of $W(z)$; $W(z)$; is regarded as the beam radius. The rms width of the intensity distribution is $\sigma=W(z) / 2$.
The beam width is governed by
$W(z)=W_{0}\left[1+\left(z / z_{0}\right)^{2}\right]^{1 / 2}$
$W(z)$ has the minimum value of W_{0} at $z=0$, called the beam waist. W_{0} is the waist radius; $2 W_{0}$ is called the spot size. The beam radius increases gradually with z. At $z=z_{0}$, the beam radius $=2^{1 / 2} W_{0}$.
At $z \gg z_{0}$, the beam radius $W(z)=W_{0} z / z_{0}=\theta_{0} z$
z_{0}
z_{0}
θ_{0}
$\theta_{0}=\frac{W_{0}}{z_{0}}=\frac{\lambda}{\pi W_{0}}$

$$
\theta_{0}=\frac{W_{0}}{z_{0}}
$$

If the waist is squeezed $=>$ the beam diverges;
A short wavelength and fat beam waist => a highly directional beam!

Depth of Focus :

Defined as twice the Rayleigh range $2 z_{0}$.

$$
2 z_{0}=2 \pi W_{0}^{2} / \lambda
$$

Beam Divergence :

$$
\theta_{0}=\frac{W_{0}}{z_{0}}=\frac{\lambda}{\pi W_{0}}
$$

Wavefronts: the third component in the above equation is responsible for wavefront bending. The surface of constant phase satisfy $\varphi(\rho, z)=k z-\varsigma(z)+\frac{k \rho^{2}}{2 R(z)}=2 \pi q$
$\because \zeta(\mathrm{z})$ and $R(\mathrm{z})$ are relatively slowly varying =>
\sim constant within the beam radius on each wavefront $z+\frac{\rho^{2}}{2 R}=2 \pi q+\frac{\varsigma}{k} \quad$ equation of paraboloidal wave

Properties of the Gaussian Beam at Special Points
At the plane $z=z_{0}$, the wave has the following properties
(i) the beam radius is $2^{1 / 2}$ times greater than the radius at the beam waist, and the area is larger by a factor of 2 .
(ii) The intensity on the beam axis is $1 / 2$ the peak intensity
(iii) The phase on the beam axis is retarded by an angle $\pi / 4$ relative to the phase of a plane wave
(iv) The radius of the curvature of the wavefront is the smallest, so that the wavefront has the greatest curvature ($R=2 z_{0}$)

- Near the beam center. At points for which $|z| \ll z_{0}$ and $\rho \ll W_{0}, \exp \left[-\rho^{2} / W^{2}(z)\right] \approx \exp \left[-\rho^{2} / W_{0}^{2}\right] \approx 1$
so that the beam intensity is approximately constant. Also, $R(\mathrm{z}) \approx \mathrm{z}_{0}{ }^{2} / \mathrm{z}$ and $\zeta(\mathrm{z}) \approx 0$, so that the phase $\Rightarrow k\left[z+\rho^{2} / 2 R(z)\right]=k z\left[1+\rho^{2} / 2 z_{0}^{2}\right] \approx k z$ As a result, the wavefronts are approximately planar. => Gaussian beam ~ a plane wave near its center.
- Far from the beam waist. At points within the beam-waist radius ($\rho \ll W_{0}$), but far from the beam waist $\left(z \gg z_{0}\right)$ the wave \sim like a spherical wave. Since $W(z) \approx W_{0} z / z_{0} \gg W_{0}$ and $\rho<W_{0}=>$ $\exp \left[-\rho^{2} / W^{2}(z)\right] \approx 1 \quad$ so that the beam intensity is \sim uniform. Since $R(z) \sim z$ the wavefronts are approximately spherical.
spherical

Parameters of a Gaussian Laser Beam:

* A 1-mW He-Ne laser produces a Gaussian beam of wavelength $\lambda=633 \mathrm{~nm}$ and a spot size $2 W_{0}=0.1$ mm.
$>$ Angular divergence: $\theta_{0}=W_{0} / z_{0}=\lambda / \pi W_{0}=633 \times 10^{-9}$ $/ 3.1416 / 0.05 \times 10^{-3} \approx 4.03 \times 10^{-3} \mathrm{rad}$.
$>$ Depth of focus: $2 z_{0}=2 \pi W_{0}^{2} / \lambda=2 \times 3.1416$
$\times\left(0.05 \times 10^{-3}\right)^{2} / 633 \times 10^{-9}=2.48 \times 10^{-2}(\mathrm{~m})=2.48(\mathrm{~cm})$
$>$ At $z=3.5 \times 10^{5} \mathrm{~km}$ (\sim distance to moon), the
diameter of the beam $2 \mathrm{~W}(\mathrm{z}) \sim 2 \theta_{0} \mathrm{z}=2 \times 4.03 \times 10^{-3} \times$
$3.5 \times 10^{5} \mathrm{~km}=2.821 \times 10^{3} \mathrm{~km}=2.821 \times 10^{6} \mathrm{~m}$
$>$ The radius of curvature $R(z)=z\left[1+\left(z_{0} / z\right)^{2}\right]$
($\mathrm{z}_{0}=1.24 \mathrm{~cm}$); at $\mathrm{z}=0$ is $R(\mathrm{z})=0$;
at $z=z_{0}$ is $R(z)=2 z_{0}=2.48 \mathrm{~cm}$;
at $z=2 z_{0}$ is $R(z)=2.5 z_{0}=3.1 \mathrm{~cm}$;
$>$ Optical intensity at the beam center: $\mathrm{z}=0, \rho=0$

$$
\begin{aligned}
& I(\rho, z)=\frac{2 P}{\pi W^{2}(z)} \exp \left[-\frac{2 \rho^{2}}{W^{2}(z)}\right] \\
& \begin{aligned}
I(0,0) & =2 P / \pi W_{0}^{2}=2 \times 1 / \pi /(0.005)^{2} \mathrm{~mW} / \mathrm{cm}^{2} \\
& =25465 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned} \\
& \begin{aligned}
& \because W\left(z_{0}\right)=\sqrt{2} W_{0} \\
& I\left(0, z_{0}\right)=2 P / \pi W\left(z_{0}\right)^{2}=P / \pi W_{0}^{2}=1 / \pi /(0.005)^{2} \\
& \mathrm{~mW} / \mathrm{cm}^{2}=12732 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned} \\
& \text { Point source of } 100 \mathrm{~W} \text { at } \mathrm{z}=0 . \text { At } \mathrm{z}=\mathrm{z}_{0}, 100 \mathrm{~W} \text { is } \\
& \text { distributed over } 4 \pi z_{0}{ }^{2} .
\end{aligned} \begin{aligned}
& \Rightarrow I\left(z_{0}\right)=100 \times 1000 / 4 / \pi /(1.24)^{2}=5175 \mathrm{~mW} / \mathrm{cm}^{2} .
\end{aligned}
$$

Parameters required to characterize a Gaussian Beam:

* Peak amplitude, direction (beam axis), location of its waist, and the waist radius $\left(W_{0}\right)$ or the Rayleigh range $\left(\mathrm{z}_{0}\right)$.
* q-parameter: $q(z)=z+i z_{0}$. If $q(z)=3+i 4 \mathrm{~cm}$ at some points on the beam axis => beam waist lies at a distance $\mathrm{z}=3 \mathrm{~cm}$ to the point and that the depth of focus is $2 z_{0}=8 \mathrm{~cm} . q(z)$ is linear on $z, q(z)=q_{1}$ and $q(z+d)=q_{2}=>q_{2}=q_{1}+d$. The q-parameter is sufficient for characterizing a Gaussian beam.
* Determination of q-parameter: measure the beam width, $W(z)$, and the radius of curvature, $R(z)$, at an arbitrary point on the axis => using equation

$$
\frac{1}{q(z)}=\frac{1}{z+i z_{0}}=\frac{1}{R(z)}-i \frac{\lambda}{\pi W^{2}(z)}
$$

or solve z, z_{0}, and W_{0} using the following equations;

$$
\begin{aligned}
& R(z)=z\left[1+\left(z_{0} / z\right)^{2}\right] \quad W(z)=W_{0}\left[1+\left(z / z_{0}\right)^{2}\right]^{1 / 2} \\
& W_{0}=\left(\lambda z_{0} / \pi\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \because R=z\left[1+\left(z_{0} / z\right)^{2}\right] \quad W=\left(\lambda z_{0} / \pi\right)^{1 / 2}\left[1+\left(z / z_{0}\right)^{2}\right]^{1 / 2} \\
& \Rightarrow R z=z^{2}+z_{0}^{2} \quad z_{0}\left(\pi W^{2} / \lambda\right)=z_{0}^{2}+z^{2} \\
& \Rightarrow z_{0}\left(\pi W^{2} / \lambda\right)=R z \quad \because z_{0}=\sqrt{R z-z^{2}} \\
& \Rightarrow \sqrt{R z-z^{2}\left(\pi W^{2} / \lambda\right)=R z} \\
& \Rightarrow z=\frac{R}{1+\left(\lambda R / \pi W^{2}\right)^{2}} \quad ; W_{0}=\frac{W}{\left[1+\left(\pi W^{2} / \lambda R\right)\right]^{1 / 2}}
\end{aligned}
$$

- Transmission through optical components:
- Transmission through a thin lens: the complex transmittance of a thin lens of focal length $f \propto$ $\exp \left(i k \rho^{2} / 2 f\right)$; when a Gaussian beam crosses the lens its complex amplitude is multiplied by this phase factor $=>$ wavefront is bent, but the beam radius is not altered

* A Gaussian beam centered at $z=0$ with waist radius W_{0} is transmitted through a thin lens located at z; The phase at the plane of the lens is $k z+k\left(\rho^{2} / 2 R\right)-\varsigma$
The phase of the transmitted wave is altered to

$$
k z+k\left(\rho^{2} / 2 R\right)-\varsigma-k\left(\rho^{2} / 2 f\right)=k z+k\left(\rho^{2} / 2 R^{\prime}\right)-\varsigma
$$

where $1 / R^{\prime}=(1 / R)-(1 / f) \begin{aligned} & R:+ \text { beam diverging; } \\ & R^{\prime}: \text { - beam converging }\end{aligned}$
The transmitted wave is itself a Gaussian beam with width $W^{\prime}(=W)$ and radius of curvature R^{\prime}.
The waist radius of the new beam W_{0} ' centered at z^{\prime};

$$
W_{0}^{\prime}=\frac{W}{\left[1+\left(\pi W^{2} / \lambda R^{\prime}\right)\right]^{1 / 2}}
$$

$$
-z^{\prime}=\frac{R^{\prime}}{1+\left(\lambda R^{\prime} / \pi W^{2}\right)^{2}}
$$

to the right of the lens

Substituting $R(\mathrm{z})$ and $W(\mathrm{z})$ into above equation!

Waist radius	$W_{0}^{\prime}=M W_{0}$	
Waist location	$\left(z^{\prime}-f\right)=M^{2}(z-f)$	
Depth of focus	$2 z_{0}^{\prime}=M^{2}\left(2 z_{0}\right)$	Parameter
Divergence	$2 \theta_{0}^{\prime}=2 \theta_{0} / M$	Transformed
Magnification	$M=M_{r} /\left(1+r^{2}\right)^{1 / 2}$	by a Lens
$r=z_{0} /(z-f)$	$M_{r}=\|f /(z-f)\|$	

Consider the limiting case ($z-f$) >> z_{0}; $\Rightarrow r \ll 1 \Rightarrow M \approx M_{\mathrm{r}} \Rightarrow$ equations of ray optics

* Beam shaping

Beam focusing: a lens is placed at the waist of a Gaussian beam

The transmitted beam is then focused to a waist radius W_{0}^{\prime} at a distance z^{\prime} given by

$$
\begin{aligned}
& r=-z_{0} / f \quad M_{r}=1 \quad M=1 /\left(1+\left(z_{0} / f\right)^{2}\right)^{1 / 2} \\
& \Rightarrow W_{0}^{\prime}=\frac{W_{0}}{\left[1+\left(z_{0} / f\right)^{2}\right]^{1 / 2}} \quad ; \quad z^{\prime}=\frac{f}{1+\left(f / z_{0}\right)^{2}}
\end{aligned}
$$

If the $2 z_{0}$ (depth of focus) >>f(focal length)
$\Rightarrow W_{0}^{\prime} \approx\left(f / z_{0}\right) W_{0}=\lambda f /\left(\pi W_{0}\right)=\theta_{0} f ; z^{\prime} \approx f$
The incident Gaussian beam is well approximated by a plane wave at its waist => focused at the focal plane!
/l Smallest possible spot size is desired in many applications (laser scanning, laser printing, and laser fusion).

$$
\because W_{0}^{\prime} \approx \lambda f /\left(\pi W_{0}\right) \quad \begin{aligned}
& \text { Smallest } \lambda \text { and } f ; \\
& \text { thickest incident beam }
\end{aligned}
$$

The lens should intercept the incident beam, its diameter D must be at least $2 W_{0}$; assume $D=$ $2 W_{0} . \quad W_{0}^{\prime} \approx \lambda f /(\pi D / 2) \Rightarrow 2 W_{0}^{\prime} \approx 4 \lambda F_{\#} / \pi$ $F_{\#}=f / D \quad F$-number of the lens
A microscope objective with small F-number is often used!
Beam collimation: a Gaussian beam is transmitted through a thin lens of focal length f;

$$
\text { From }(z-f)=M^{2}(z-f) \quad z^{\prime} / f-1 \ominus z_{0} / f=0
$$

$$
\Rightarrow \frac{z}{f}-1=\frac{z / f-1}{(z / f-1)^{2}+\left(z_{0} / f\right)^{2}}
$$

For beam collimation, z^{\prime} as distance $z / f-1$ as possible from the lens; achieved by smallest z_{0} / f (short depth of focus and long focal length)

For a given ratio of $z_{0} / f=>$ the optimal value of z is maximum of z^{\prime} / f; assume $z / f-1=a$ and $z_{0} / f=b$.

$$
\frac{\partial}{\partial a}\left(\frac{a}{a^{2}+b^{2}}\right)=0 \quad \Rightarrow a^{2}-b^{2}=0 \Rightarrow z=z_{0}+f
$$

* Reflection from a spherical mirror

Incident Gaussian beam: width W_{1}, roc R_{1};
Reflected Gaussian beam: width W_{2}, roc R_{2};
The phase of the incident beam is modified by a phase factor $\exp \left(-i k \rho^{2} / R\right)$
The relations between W_{1}, R_{1}, W_{2}, and R_{2} are

$$
W_{2}=W_{1} ;\left(1 / R_{2}\right)=\left(1 / R_{1}\right)+(2 / R)
$$

- If the mirror is planar $=>R=\infty \quad R_{2}=R_{1}$
- If $R_{1}=\infty$, i.e. the beam waist lies on the mirror $R_{2}=R / 2$
- If $R_{1}=-R$, i.e. the incident beam has the same curvature as the mirror $=>R_{2}=R$.
* Transmission through an arbitrary optical system Modification of a Gaussian beam by an arbitrary paraxial optical system characterized
by a matrix M.

$\frac{\text { The } A B C D L \text { Liv/ }}{A q_{1}+B}$

$$
q_{2}=\frac{A q_{1}+B}{C q_{1}+D}
$$

Transmission through free space: distance d of free space; $\quad q_{2}=q_{1}+d \Rightarrow A=1, B=d, C=0, D=1$ $\boldsymbol{M}=\left[\begin{array}{ll}1 & d \\ 0 & 1\end{array}\right]$

Transmission through a thin optical component; ray position is the same, angle is altered
$y_{2}=y_{1} ; \theta_{2}=C y_{1}+D \theta_{1}$
$D=n_{1} / n_{2}$;
In terms of beam parameters

The optical component is thin => beam width does not changed $=>W_{1}=W_{2}$;
$\theta_{2} \approx y_{2} / R_{2} ; \theta_{1} \approx y_{1} / R_{1} \Rightarrow 1 / R_{2}=C+D / R_{1}$
Paraxial approximation
$\Rightarrow 1 / q_{2}=C+D / q_{1} \quad \Rightarrow q_{2}=q_{1} /\left(C q_{1}+D\right)$
$\boldsymbol{M}=\left[\begin{array}{ll}1 & 0 \\ C & D\end{array}\right]$
The matrix used in chapter could be used in Gaussian beam!

- Hermite-Gaussian Beams:

Beam of paraboloidal wavefronts are of importance; The curvature of the wavefronts could match the curvature of spherical mirrors that form a resonator Reflection inside the resonator won't change the curvature of the wavefront.

- Consider a Gaussian beam of complex envelope $A_{G}(x, y, z)=\frac{A_{1}}{q(z)} \exp \left[-i k \frac{x^{2}+y^{2}}{2 q(z)}\right] \quad ; q(z)=z+i z_{0}$
- Consider a second wave whose complex envelope $A(x, y, z)=x\left[\frac{\sqrt{2} x}{W(z)}\right] y\left[\frac{\sqrt{2} y}{W(z)}\right] \exp [i z(z)] A_{G}(x, y, z)$ $x(\cdot) ; y(\cdot) ; z(\cdot)$ are real functions
- Except for an excess phase of $z(z)$, the phase of the of the wave have the same phase as that of the underlying Gaussian wave!
- The magnitude

$$
\left(A_{1} / i z_{0}\right) x\left[\frac{\sqrt{2} x}{W(z)}\right] y\left[\frac{\sqrt{2} y}{W(z)}\right]\left[\frac{W_{0}}{W(z)}\right] \exp \left[-\frac{x^{2}+y^{2}}{W^{2}(z)}\right]
$$

Function of $x / W(z)$ and $y / W(z)$ whose width in the x and y directions vary with z in accordance with the same scaling factor $W(z)$. As z increase, the intensity distribution in the transverse plane remains fixed (except for a magnification factor W(z). => Gaussian function modulated in the x and y directions.
The existence of this wave is assured if three real function $x(\cdot) ; y(\cdot) ; z(\cdot)$ could be found such that $A(x, y, z)$ satisfies the paraxial Helmholtz equation.
Defining $u=\sqrt{2} x / W(z)$ and $v=\sqrt{2} y / W(z)$

$$
\frac{1}{x}\left(\frac{\partial^{2} x}{\partial u^{2}}-2 u \frac{\partial x}{\partial u}\right)+\frac{1}{y}\left(\frac{\partial^{2} y}{\partial u^{2}}-2 u \frac{\partial y}{\partial u}\right)+k W^{2}(z) \frac{\partial z}{\partial z}=0
$$

\because Three independent variables $=>$ assume the first term $=-\mu_{1}$, the second term $=-\mu_{2},=>$ the third term $=\mu_{1}+\mu_{2}$,

$$
\begin{align*}
& \frac{\partial^{2} x}{\partial u^{2}}-2 u \frac{\partial x}{\partial u}=-\mu_{1} x \text { (a) } \frac{\partial^{2} y}{\partial u^{2}}-2 u \frac{\partial y}{\partial u}=-\mu_{2} y \\
& k W^{2}(z) \frac{\partial z}{\partial z}=z_{0}\left[1+\left(z / z_{0}\right)^{2}\right] \frac{\partial z}{\partial z}=\mu_{1}+\mu_{2} \quad \text { (c) } \tag{c}
\end{align*}
$$

Equation (a) represents an eigenvalue problem whose eigenvalues are $\mu_{1}=l=0,1,2 \ldots$ and whose eigenfunctions are the Hermite polynomials $\left(H_{1}(u)\right)$

$$
x(u)=H_{l}(u)
$$

Hermite polynomials is defined by the recurrence relation

$$
\begin{aligned}
& H_{l+1}(u)=2 u H_{l}(u)-2 l H_{l-1}(u) \quad H_{0}(u)=1 ; H_{1}(u)=2 u \\
& \Rightarrow H_{2}(u)=4 u^{2}-2 ; H_{3}(u)=8 u^{3}-12 u ; \cdots \\
& \text { Similarly, solution for equation (b) is (let } \left.\mu_{2}=m\right) \\
& y(v)=H_{m}(v)
\end{aligned}
$$

Solution for equation (c) is (with $\mu_{1}+\mu_{2}=l+m$)

$$
z(z)=(l+m) \varsigma(z)
$$

Substitute all the solution into $A(x, y, z)$ and multiplying by the phase factor $\exp (-i k z)$
$=>U_{l, m}(x, y, z)$
$U_{l, m}(x, y, z)=A_{l, m}\left[\frac{W_{0}}{W(z)}\right] G_{l}\left[\frac{\sqrt{2} x}{W(z)}\right] G_{m}\left[\frac{\sqrt{2} y}{W(z)}\right]$
$\times \exp \left[-i k z-i k \frac{x^{2}+y^{2}}{2 R(z)}+i(l+m+1) \varsigma(z)\right]$
where $G_{l}(u)=H_{l}(u) \exp \left(-u^{2} / 2\right)$
Hermite-Gaussian function

- Intensity distribution

$I_{l, m}(x, y, z)=\left|A_{l, m}\right|^{2}\left[\frac{W_{0}}{W(z)}\right]^{2} G_{l}^{2}\left[\frac{\sqrt{2} x}{W(z)}\right] G_{m}^{2}\left[\frac{\sqrt{2} y}{W(z)}\right]$

Find the formula for the spot size of a TEM ${ }_{00 q}$ mode at the spherical mirror of Fig. 5.1 by following the procedure:
(a) Show an equivalent-lens waveguide for this cavity and identify a unit cell such that the ABCD law will yield the spot size on the spherical mirror directly.

$$
\begin{aligned}
& \xrightarrow{c o n c o n} \\
& f=R_{2} / 2
\end{aligned}
$$

$$
\begin{aligned}
& T=\left[\begin{array}{ll}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 d \\
0 & 1
\end{array}\right]=\left[\begin{array}{lr}
1 & 2 d \\
-\frac{1}{f} & 1-\frac{2 d}{f}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
T=\left[\begin{array}{ll}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 d \\
0 & 1
\end{array}\right]=\left[\begin{array}{lr}
1 & 2 d \\
-\frac{1}{f} & 1-\frac{2 d}{f}
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \\
\frac{\pi w_{1}^{2}\left(z_{1}\right)}{\lambda_{0}}=\frac{B}{\left[1-\left(\frac{A+D}{2}\right)^{2}\right]^{\frac{1}{2}}}=\frac{2 d}{\left[1-\left(\frac{2-\frac{2 d}{f}}{2}\right)^{2}\right]^{\frac{1}{2}}} \\
\\
=\frac{2 d}{\left[\frac{2 d}{f}-\left(\frac{d}{f}\right)^{2}\right]^{\frac{1}{2}}}
\end{gathered}
$$

Confocal Resonator

$$
\text { Stability: } \quad 0 \leq \frac{A+D+2}{4}<1
$$

$$
\begin{aligned}
& \mathrm{f}=\mathrm{R} / \mathbf{2}
\end{aligned}
$$

GOOD LUCK FOR EVERY 106 Phys STUDENTS

ГОО \triangle АYXK ФОР Е̧ЕРЧ 106 Пŋүб ᄃTY \triangle ENTL

