16: Cavities, modes and mode-locking

 Laser cavities and modes
— Simple laser cavities

Types of resonator

Transverse EM modes

Longitudinal modes
Real laser cavities
» Gain depletion
— Unbroadened
— Homogeneously-broadened
— In homogeneously-broadened
* Single-mode and multi-mode emission

* Mode-locking
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Simple laser cavities

Why a resonator / cavity?

* y is typically small (~0.1 m') so multiple passes needed for sufficient
amplification(exception is Nd-glass lasers)

» optical feedback gives self-sustained laser oscillation rather than
laser amplification - and hence longitudinal coherence of beam

« optical resonator determines frequency of oscillation — tunability

Generic cavity:

Mirror M,

Mirror M
) OC (Output Coupler)

HR (High Reflector)

Reflectivity R, <100%

(e.g. 98%)
\ / radius r,

High reflectance, low absorption, flat (#4/20)mirrors ~
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Reflectivity R, ~#100%
radius r,

534 PHYS. - Dr. A. M. Azzeer



Types of resonator
TYPE SKETCH no| r | sTABILITY | ALIGN | NODE
* v
planar © | o |marginal
9 "
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v &
nearly ~1
confocal =L | 2L | stable x
Ehaskasll . o
confocal L L |marginal x
nearly
_GOMEETNG N >L/2|>L/2| stable x
EEEHINE L/2 | L/2 | marginal x
hemi- .
concentric >| L © |marginal x
,
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Real laser cavities

.. can be much more complicated ...
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Transverse Electro-Magnetic Modes 1

The solution of Maxwell's equations for a beam emitted from a simple
laser cavity has transverse solutions (“TEM modes”) of the form:

2 2
Emn (X' y)= EOHm(mJHn(mJeXp(_ - +2y j
w w

W

H,, and H,, are Hermite polynomials, with the first few terms:
Ho(x)=1; H(X)=2x; H,(X)=2(2x>-1).

The most important mode is the TEM; mode, which has a Gaussian
radial distribution:

2 2 2
X"+ r
EOO (X7 y) = EO exp[_ 2y J = EO exp(_ ZJ
w w

W is a measure of the beam size.

The TEM,, mode has the smallest divergence and can be focussed to
the smallest spot size. v/
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Transverse Electro-Magnetic Modes 2

» The 00 mode is the axial Gaussian
beam.

* Non-axial self-replicating rays give
rise to non-axial modes:

[ —]

* Higher-order modes can be
suppressed by aperturing

TEMsg
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Longitudinal modes
» General condition for resonance:
phase accrued on a round-trip of the cavity = Agg;=M2 7 (M=integer)
» We will consider only a simple Fabry-Perot resonator with plane parallel
mirrors Vi o~
Mirror M, Medium with Mirror M,
Reflectivity R, gain y Reflectivity R,
internal loss o
4 refractive index ngZ
» Condition for resonance: « Modal frequencies:
A Kz = 27 n2L = m2 Vp ==
=KAZ=| — |NZL=Mlx S—8——
PR p) "4 2nL
* Mode spacing:
A c
.'.nL:m( V=V .-V =
2 m+1 m '
2nI’_
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Longitudinal modes 2

Spatial profile of modes Resonances
y) - C _mc
nb=m3 " 20l
g L o Vm-l Vm lVrTl+l
=4 ) L
1 OO L | 5
- Fey
e X XK s 8
k=) Y
q) 1
o
@©
0 L
Z frequency
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Single mode and multi-mode lasing
We know that:

(1) The steady-state gain 1 1
constant y(v)at laser Yo(V)=a;+an=a;+_-In

> . 2L (RR,
oscillation frequency vis
clamped to :

(2) The gain constant of a c2
distributed (broad-band) ()= Ny =92 Ny |- g(v)
gain medium is: 91 87 Nvirg,

(3) The optical resonator supports longitudinal C

i OV=Vmu—Vm =5
modes of frequency V;,, where: 2nL

« For narrow gain width Av< ov
what is lasing frequency?

+ For broad gain width Av> v
which mode lases? (it depends on whether
broadening is homogeneous or inhomogeneous)
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Gain depletion for unbroadened medium
What is effect of intense monochromatic light on the gain coefficient?
For a 4-level laser we had:
_ Roy, _ Rrgop  Rrgop, y
Uz, +W  1+Bppr -

4 s» 1+B ! 1+ 1

12 C z-s,p |
S
The gain coefficient decreases (i.e. the gain saturates) with increasing
light intensity in the cavity, as the number of electrons in the upper state
approaches the total number of electrons

7%=R 7, O0p is the unsaturated gain, when not far above threshold
|5=B1, 7,/C is the saturation intensity

At the photon energy hv,=E,-E, :

Yo (Vo )
1+ 1(vy)/ s »
Dr. Abdallalh M. Azzeer
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Gain depletion for homogeneous broadening

What is effect of intense monochromatic light at frequency v, on a
homogeneously-broadened gain coefficient centered on frequency v, ?

homogeneously-broadened
= “all atoms are the same” and are each broadened

7/(‘/) gain Therefore the gain is depleted
/ function at all frequencies, i.e. the gain
mono- spectrum decreases uniformly
chromatic with increasing intensity
beam

1

v, I>1) W"*““W
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Gain depletion for inhomogeneous broadening

What is effect of intense monochromatic beam at frequency v, on an
inhomogeneously-broadened gain coefficient centered on frequency v, ?
inhomogeneously-broadened

= “all atoms are different” and the broadening reflects the
spread of resonant frequencies

Therefore the gain is only

nv) gain depleted at frequencies which
mono- function are resonant with the light

chromatic /f beam, i.e. the beam “burns” a
beam “spectral hole” in the gain

spectrum

bn)=r0la) o
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Single mode lasing for homogeneous broadening

cavity * Homogeneous broadening
7(‘/) modes
! * All atoms are the same

AR ) I/ N (R A B
qu A indreasing  * The gain at ALL frequencies
i UmPingis clamped when A Vi) =
/ N
|  Gain at frequencies other
ot Ym YoaVmez Vo than v, cannot reach
‘I(V ) threshold
‘ ‘ A ‘ ‘ * Single mode lasing

Vi Vm Vmaa 1%
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Single mode lasing for inhomogeneous broadening

LARGE cavity mode spacing: v > Av

cavity modes * Inhomogeneous broadening

I }/(‘T) /< 5‘/;‘ « Only one cavity mode within
the gain bandwidth
down to loss line

spectral hole burnt
/\ * The gain at the cavity

4 || i resonance Vm becomes

increasing  clamped when A Vin) =
pumping

 Gain at other frequencies is not
VetV affected (but no cavity
feedback at these frequencies)

1(v)
] JK * Single mode lasing
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Multimode lasing for inhomogeneous broadening

SMALL cavity mode spacing: 6v <Av . Inhomogeneous broadening
cavity

I 7/(‘/) ov modes * All atoms are different
[ LK |\
spectral hole . ; ;
burnt down | | The gain at any cavity
to loss line \ , nceasing resonance V; within gain
. g PHMPING spectrum becomes clamped
th [~ 7|/ [~ N 5= =
Av when 7( Vi)_yth
Z §- » Gain at other frequencies is
Vi Vo Vet Vins2 Vv not affected
]( V) * Lasing can occur for every
cavity mode where the gain
reaches the threshold value

Vi Y Vi1 Vine2 Vv

» Multimode lasing

5
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Comparison of single and multimode lasing

Homogeneous broadening: Inhomogeneous broadening:
Single mode lasing: Multiple mode lasing:
cavity cavity
") modes f nw) modes
/\ F TN

spectral hole burnt
down to loss Iine\

Jan ot B S L

indreasing )
i umping e S
i~

reasing
umping

N

Vi Ym Vie1 Vs 14 Vi Yim Vie1 Ve | 4
Vit Vm Vel |4 Vit Vm Vel Vme2 V/
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Generating short pulses = “mode-locking”
* Locking the phases of the laser modes yields an
ultrashort pulse.

outof outof outof Irradiance vs. time

phase phase phase T T T T T T
Random Fi;andom Lti)g?;
phases BHAESR 4
of all
laser
modes

Time — lndbibin sidai bt ]
out of in out of T T T Ty
phase phase! phase Locked Ultrashor
ulse!!
i ik phases pulse
phases
of all
laser
modes . L
Time =t Time =t 'y
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Simple approach to mode-locking
simplified to ....
I(v) o 1)

Vit Vi Vine1 Vinao 1% Vi Vin Vin+1 VN‘ v
Each mode has an amplitude E,, Constant amplitude E,,
frequency v,+mov, phase ¢, constant phase ¢,=0
E(t): E(t): EO eXp[iZﬂ'Vlt]

: . N
> Eexpli2(vy + movit+igy,] x > exp[im(2zov t)]
m m=1 /

Dr. Abdallal M. Azzeer
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Simple approach to mode-locking

. N
Tosolve: (1) = Ej expli2migt]x Y explim(2z6v t)]

m=1
Use the identity: % exp(inX)=M
= sin(x/2)

sin(N27z6v t/2)
sin(2zov t/2)

- E(t) = Eyexpli2zvit]x

« train of pulses with period T=2nL/c

- peak power = N x average power

* peak field amplitude = N x amplitude of single mode
« individual pulse width 7=T/N=1/Av

Important exercise: confirm the above properties!
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Numerical simulation of mode-locking
8 Modes,

50 Random phases

40
=
@ 30
o
§ 20

10

0

8 Modes
Phases=0 att=0

50

40
=
3 30
E 20

10

Time
Ultrafast lasers often have thousands of modes. 'y
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How to achieve mode-locking?

frequency domain

Vm-l Vm Vm+1 Vm+2 |4

How to lock the phases @,?

a2

Do it in the time domain, using a fast §_ closed ‘z’_ closed §_

shutter, synchronised to cavity round- ® € ©

trip time, to modulate the cavity loss t
a light

CW modes cannot oscillate due to

cavity losses. Only the mode-locked

train is unperturbed by the shutter. '
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Methods of mode-locking

Active mode-locking:
» Modulate cavity losses using active device such as electro-optic or acousto-
optic modulator

* Modulator induces sidebands in longitudinal mode 1, which each
corresponds to another longitudinal mode V| (k=0, +1,£2,...)

e Can actually mode-lock inhomogeneously- and homogeneously- broadened
lasers this way

* How to synchronise modulator to the cavity round-trip time? “Regenerative
mode-locking” is one way (light detector—phase-locked loop—modulator)

Passive mode-locking:

» Use the short, intense light pulse of the mode-locked pulse train as its own
shutter, inducing a nonlinear effect in either the laser material or a separate
nonlinear element.

* Nonlinear interactions:

— Saturable absorption (dye jet or semiconductor layers “SESAM”)
— Kerr effect (intensity-dependent refractive index — see Ti-sapphire laser)

5
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What U need 2 know: Cavities & mode-locking 16.1

Understanding of:

L
i [ Mirror M, Medium with Mirror M,
longitudinal modes T dum Wl

for simple R, internal loss a; R,
. refractive index N
Fabry-Perot cavity

Define the:
condition for resonance
of cavity mode Apgr =m2z
Derive the: C mc
modal frequencies Vp=—="—

An 20l
mode spacing c
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What U need 2 know: Cavities & mode-locking 16.2

7v) \

cavity modes

NI

increasing
pumping

Describe with the aid of these diagrams:

single-mode lasing
for
homogeneously-broadened gain medium

Kf " VI) 2; o ;a\iity\Tom

. . spectral hole \ 7
multi-mode lasing burnt down _ .
to loss line \q, —easad
for pumping
inhomogeneously-broadened gain medium i Av

Iv)

1

I

K Vit Vi Vet Vine2 %/
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What U need 2 know: Cavities & mode-locking 16.3

Describe with the aid of these
diagrams:

principles of mode-locking

properties of mode-locked pulses

Derive (under simple conditions) the:
Electric field of mode-locked pulses

I(v) | frequency domain

Vi VY Vi Vine2

; 175v >

=2nL/c

1)

3
~1/Av

peak
height
=N x
average
value

- E(t)= Eg expli2zmt]x

sin(N2zov t/2)
sin(2zov t/2)
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