

Transverse Electro-Magnetic Modes 1

The solution of Maxwell's equations for a beam emitted from a simple laser cavity has transverse solutions ("TEM modes") of the form:

$$E_{mn}(x, y) = E_0 H_m\left(\frac{\sqrt{2}x}{w}\right) H_n\left(\frac{\sqrt{2}y}{w}\right) \exp\left(-\frac{x^2 + y^2}{w^2}\right)$$

 H_m and H_m are Hermite polynomials, with the first few terms: $H_0(x) = 1$; $H_1(x) = 2x$; $H_2(x) = 2(2x^2-1)$.

The most important mode is the TEM_{00} mode, which has a Gaussian radial distribution:

$$E_{00}(x, y) = E_0 \exp\left(-\frac{x^2 + y^2}{w^2}\right) = E_0 \exp\left(-\frac{r^2}{w^2}\right)$$

w is a measure of the beam size.

The TEM_{00} mode has the smallest divergence and can be focussed to the smallest spot size.

Dr. Abdallah M.Azzeer

